Milling and Baking Test Results for Eastern Soft Wheats Harvested in 2023

Soft Wheat Quality Council of the Wheat Quality Council

March 26, 2024

Our Mission is to advocate the development of new wheat varieties that improve the value of wheat to all parties in the U.S. supply chain.

Our Goal is to improve the value of all U.S. wheat classes for producers, millers, and processors of wheat.

Membership in the Wheat Quality Council is a wise investment if wheat or flour quality has any influence on your business.

Uniform grow-outs are an extremely important part of the Wheat Quality Council efforts to improve wheat and flour quality.

Byung-Kee Baik, Ph.D. USDA-ARS-CSWQRU Soft Wheat Quality Laboratory OARDC-OSU 1680 Madison Avenue Wooster, Ohio 44691 byungkee.baik@ars.usda.gov

Dave Green

The Wheat Quality Council PO Box 19539 Lenexa, KS 66285 Office: (913) 634-0248 E-mail: <u>dave.green.wqc@gmail.com</u>

Table of Contents

ACKNOWLEDGMENTS	5
COLLABORATORS FOR 2023 CROP YEAR	5
SOFT WHEAT QUALITY COUNCIL	6
SWQC TECHNICAL BOARD Quality Evaluation Committee of the SWQC Amendments	6 7 7
WQC 2023 CROP YEAR ENTRIES AND CONTRIBUTING BREEDING PROG	RAMS.8
DESCRIPTION OF ENTRIES	9
MILLING AND BAKING RESULTS REPORTED BY COLLABORATORS AND) SWQL 20
MILL STREAM DISTRIBUTION BY SWQL	
WHEAT GRAIN AND FLOUR QUALITY CHARACTERISTICS	
SUMMARIES AND STATISTICS OF COMBINED COOPERATOR TEST PARAMETERS	
COOPERATOR DATA FOR EACH QUALITY TEST PARAMETER	
COOPERATOR DATA	47
APPENDIX I. MATERIALS AND METHODS OF THE USDA-ARS SWQL	74

Figures and Tables

FIGURE 1. MIXOGRAMS OF THE WQC 2023 CROP ENTRIES FROM VIRGINIA POLYTECHNIC	
INSTITUTE AND STATE UNIVERSITY PERFORMED BY USDA-ARS SOFT WHEAT QUALIT	Y
LABORATORY. *CHECK VARIETIES	
FIGURE 2. MIXOGRAMS OF THE WQC 2023 CROP ENTRIES FROM BECK'S HYBRIDS PERFORM	ED BY
USDA-ARS SOFT WHEAT QUALITY LABORATORY	
FIGURE 3. MIXOGRAMS OF THE WQC 2023 CROP ENTRIES FROM MICHIGAN STATE UNIVERS	ITY
PERFORMED BY USDA-ARS SOFT WHEAT QUALITY LABORATORY. *CHECK VARIETY.	73
TABLE 1. MIAG MULTOMAT MILL STREAM YIELDS (%) OF THE WQC 2023 CROP YEAR ENTR	IES BY
SWQL	20
TABLE 2. GRAIN CHARACTERISTICS AND SKCS PARAMETERS OF THE 2023 ENTRIES BY USD	A-
ARS SOFT WHEAT QUALITY LABORATORY	23
TABLE 3. MIAG AND QUADRUMAT MILLING PARAMETERS OF THE 2023ENTRIES BY USDA-A SOFT WHEAT QUALITY LABORATORY.	ARS
TABLE 4 FLOUR QUALITY PARAMETERS OF THE 2023 ENTRIES BY USDA-ARS SOFT WHEAT	г
OUALITY LABORATORY	25
TABLE 5. MEAN SRC TEST PARAMETERS AND OVERALL FLOUR QUALITY SCORES BY SIX	
COOPERATORS (N= 6) ^A	
TABLE 6. DAMAGED STARCH CONTENT ($N=2$). FLOUR FALLING NUMBER ($N=2$) AND AMYLOG	RAPH
PEAK VISCOSITY $(N=1)^{A}$	27
TABLE 7. ALVEOGRAPH TEST PARAMETERS BY A COLLABORATOR (N=1)	
TABLE 8. MEAN FARINOGRAPH TEST PARAMETERS BY TWO COLLABORATORS (N=1) ^A	29
TABLE 9. MEAN MIXOGRAPH TEST PARAMETERS BY TWO COLLABORATORS (N=2) ^A	30
TABLE 10. MEAN (N=4) RAPID VISCO-ANALYZER (RVA) TEST PARAMETERS ^A	31
TABLE 11. MEAN SUGAR-SNAP COOKIE TEST (AACCI APPROVED METHODS 10-50D (N=4) &	& 10-52
(N=2)) PARAMETERS ^A	32
TABLE 12. BISCUIT QUALITY PARAMETERS BY A COLLABORATOR (N=1) ^A	33
TABLE 13. MEAN (N=2) SPONGE CAKE BAKING TEST PARAMETERS ^A	34
TABLE 14. MEAN FLOUR (N=7), COOKIE (N=5) AND SPONGE CAKE (N=2) QUALITY SCORES ^A	35
TABLE 15. WATER SRC (%) OF 2023 WQC ENTRIES BY COOPERATORS	36
TABLE 16. SODIUM CARBONATE SRC (%) OF 2023 WQC ENTRIES BY COOPERATORS	37
TABLE 17. SUCROSE SRC (%) OF 2023 WQC ENTRIES BY COOPERATORS	38
TABLE 18. LACTIC ACID SRC (%) OF 2023 WQC ENTRIES BY COOPERATORS	39
TABLE 19. SUGAR-SNAP COOKIE (10-50) DIAMETER (MM) OF 2023 WQC ENTRIES BY	40
CUUPERATURS	4U
TABLE 20. SUGAR-SINAP COUKIE (10-32) DIAMETER (CM) OF 2025 W QC ENTRIES BY COUPER	
TADLE 21 SDONGE CAKE VOLUME (MI) OF 2022 WOC ENTRIES BY COODED ATOPS	41 12
TABLE 21. SPONGE CARE VOLUME (ML) OF 2023 WQC ENTRIES BT COUPERATORS	
TABLE 22. I LOUR QUALIT I SCORES OF 2023 WYC ENTRIES DI COOFERATORS	+J

TABLE 23. COOKIE QUALITY SCORES OF 2023 WQC ENTRIES BY COOPERATORS
TABLE 24. SPONGE CAKE QUALITY SCORES OF 2023 WQC ENTRIES BY COOPERATORS
TABLE 25. AVERAGE WHEAT GRAIN AND FLOUR QUALITY CHARACTERISTICS OF THE 2023 CROP
SOFT WHEAT QUALITY COUNCIL ENTRIES BETWEEN 2009 AND 2022 CROP YEARS
TABLE 26. SUGAR-SNAP COOKIE BAKING TEST PARAMETERS BY ADM MILLING
TABLE 27. EVALUATION COMMENTS ON FLOUR QUALITY AND BAKED PRODUCT PERFORMANCE BY
ADM MILLING
TABLE 28. SOLVENT RETENTION CAPACITY AND COOKIE BAKING TEST PARAMETERS BY ARDENT
MILLS
TABLE 29. EVALUATION COMMENTS ON FLOUR QUALITY AND BAKED PRODUCT PERFORMANCE BY
ARDENT MILLS
TABLE 30. SOLVENT RETENTION CAPACITY AND ALVEOGRAPH PARAMETERS BY KELLANOVA 51
TABLE 31. FARINOGRAPH AND RAPID VISCO-ANALYZER PARAMETERS BY KELLANOVA 52
TABLE 32. FLOUR MOISTURE AND PROTEIN CONTENT OF THE ENTRIES BY KELLANOVA 53
TABLE 33. EVALUATION COMMENTS ON ANALYTICAL FLOUR QUALITY BY KELLANOVA 54
TABLE 34. SOLVENT RETENTION CAPACITY BY MENNEL MILLING 55
TABLE 35. SUGAR-SNAP COOKIE BAKING TEST (10-50D) AND BISCUIT TEST PARAMETERS BY
Mennel Milling
TABLE 36. RAPID VISCO-ANALYZER PARAMETERS BY MENNEL MILLING
TABLE 37. EVALUATION COMMENTS ON FLOUR QUALITY AND BAKED PRODUCT PERFORMANCE BY
Mennel Milling
TABLE 38. SOLVENT RETENTION CAPACITY PARAMETERS BY MONDELEZ 59
TABLE 39. SOLVENT RETENTION CAPACITY, COOKIE BAKING TEST AND AMYLOVISCOGRAPH TEST
PARAMETERS BY STAR OF THE WEST MILLING
TABLE 40. RAPID VISCO-ANALYZER PARAMETERS BY STAR OF THE WEST MILLING
TABLE 41. EVALUATION COMMENTS ON FLOUR QUALITY AND BAKED PRODUCT PERFORMANCE BY
STAR OF THE WEST MILLING
TABLE 42. SPONGE CAKE BAKING TEST PARAMETERS BY WHEAT MARKETING CENTER
TABLE 43. EVALUATION COMMENTS ON FLOUR QUALITY AND SPONGE CAKE BAKING TEST
PERFORMANCE BY WHEAT MARKETING CENTER
TABLE 44. SOLVENT RETENTION CAPACITY AND MIXOGRAPH TEST PARAMETERS BY USDA-ARS
WESTERN WHEAT QUALITY LABORATORY
TABLE 45. SUGAR-SNAP COOKIE AND SPONGE CAKE BAKING TEST PARAMETERS BY USDA-ARS
WESTERN WHEAT QUALITY LABORATORY
TABLE 46. EVALUATION COMMENTS ON FLOUR QUALITY AND BAKED PRODUCT PERFORMANCE BY
USDA-ARS WESTERN WHEAT QUALITY LABORATORY
TABLE 47. SOLVENT RETENTION CAPACITY AND COOKIE BAKING TEST PARAMETERS BY USDA-
ARS SOFT WHEAT QUALITY LABORATORY
TABLE 48. MIXOGRAPH PARAMETERS BY USDA-ARS SOFT WHEAT QUALITY LABORATORY 70

Acknowledgments

We thank the Wheat Quality Council for providing this forum to improve the quality of wheat. Thank you to the Soft Wheat Quality Laboratory staff and the collaborators in industry for their professional analysis and suggestions. Also, we are thankful for the cooperation from all the wheat breeding programs involved with this year's project. Great communication and cooperation among the breeding programs, growers, state foundation seeds programs, wheat seed companies and wheat quality laboratories in milling and baking companies make this project a continued success. Special appreciation goes to the grow-out cooperators, Paul Davis, for growing the entries for the 2023 crop Soft Wheat Quality Council.

This program was carried out in cooperation with and funded by the Wheat Quality Council.

ADM Milling	Vickie Correll, Jessica Lehman
Ardent Mills	Caroline Smith, Angie Anyieni, Miriam Dubin
Kellanova	Michaelia Papranec, YuLai Jin
Mennel Milling Company	Mohana Yoganandan, Jim Beauregard, Michelle Titus
Mondeléz International	David Stevenson, Juan Calle-Bellido, Gerardo Gracia-Gonzalez
Star of the West	James Janson, Jenny Weiss
Wheat Marketing Center	Liman Liu, Bon Lee, Jayne Bock
USDA-ARS Western Wheat Quality Laboratory	Alecia Kiszonas
USDA-ARS Soft Wheat Quality Laboratory	Amy Bugaj, Tom Donelson, Taehyun Ji, Tony Karcher

Collaborators for 2023 Crop Year

Soft Wheat Quality Council

Mission, Policy, and Operating Procedure

The Soft Wheat Quality Council (SWQC) will provide an organizational structure to evaluate the quality of soft wheat experimental lines and varieties grown in the Eastern regions of the United States. The SWQC also will establish other activities as requested by the membership. The SWQC operates under the direction and supervision of the Wheat Quality Council (WQC). The mission of the SWQC is to provide a forum for leadership and communication in promoting continuous quality improvement among the various elements of the community of soft wheat. **Objectives**

- Encourage wide participation by all members of the soft wheat industry.
- Determine, through technical consulting expertise, the parameters which adequately describe the performance characteristics which soft wheat industries seek in new varieties.
- Promote the enhancement of soft wheat quality in new varieties.
- Emphasize the importance of communication across all sectors and provide resources for education on the continuous improvement of soft wheat quality.
- Encourage the organizations vital to soft wheat quality enhancement to continue to make positive contributions through research and communications.
- Offer advice and support for the USDA-ARS Soft Wheat Quality Laboratory in Wooster, Ohio. **Membership**
- The membership of the SWQC will consist of members of the WQC.

SWOC Technical Board

- The Technical Board shall be the administrative unit responsible for managing the functions of the council.
- The Technical Board shall consist of three officers elected from the membership.
- Officers of the Technical Board shall consist of a chair, vice-chair, and secretary.
- Each officer serves one year in his/her office.
- Terms start the day after the annual meeting of the SWQC.
- The vice-chair replaces the chair at the conclusion of the chair's term and the secretary replaces the vice-chair at the conclusion of the vice-chair's term.
- Officers (normally only the secretary) shall be elected annually at the annual meeting of the SWQC by nomination and majority vote.
- Any eligible member may be reelected after being out of office for one year.
- Vacancies that occur during the term of office of the members of the Technical Board shall be filled by nomination and majority vote of the remaining members of the board and the WQC Executive Vice President. The appointee will serve the remaining term of the vacancy (up to 3 years).
- Exceptions to the above may be granted if voted on by Technical Board or by majority vote of the SWQC at the annual meeting.

Duties of the Technical Board

- The chair shall be responsible to establish a meeting place and preside at all meetings of the Technical Board and SWQC (selected elements of the General Meeting WQC).
- The vice-chair shall preside at meetings in absence of the chair and assume such duties as may be assigned by the chair of the Technical Board.
- The secretary shall be responsible for taking minutes of the Technical Board and the SWQC meetings.

- The Technical Board will direct the Executive Vice President of the WQC on disbursement of allocated funds.
- The chair shall be responsible for communicating budget needs to the Executive Vice President.
- The Technical Board is responsible for presenting budget updates to the general membership at the annual meeting.

Compensation

• Technical Board members shall serve without compensation.

Expenses

• Certain paid expenses may be authorized for some technical board functions.

Quality Evaluation Committee of the SWQC

Committee Purpose

A technical committee entitled "Quality Evaluation Committee" shall be established consisting of the three Technical Board officers and other key members working on soft wheat. Those other key members should include, but are not limited to:

- The Lead Scientist of the USDA Soft Wheat Quality Laboratory, Wooster, OH.
- A grow-out coordinator who is a soft wheat breeder.
- Technical collaborators from soft wheat milling and baking laboratories.

• Collaborating soft wheat breeders.

Evaluation and Responsibilities

- Establish procedures and requirements for the annual grow-out, handling, evaluation and reporting of the experimental test line quality evaluation program.
- Annual approval of the samples and check varieties submitted by soft wheat breeders.
- Milling of the experimental and check samples.
- Distribution of samples to collaborators (member companies willing to conduct testing and baking evaluations on the samples prepared).
- Preparation of a quality report.

Sample/Locations

• Each breeder entity shall have the privilege of submitting experimental test lines and a check variety each year for evaluation. (maximum 10 samples annually)

Annual Meeting

- The annual meeting of the SWQC shall coincide with the annual meeting of the WQC. If for some reason the WQC annual meeting is not held, it shall be the duty of the Technical Board chair to establish an annual meeting time and place.
- The purpose of the meeting shall be to discuss the results of the test line quality testing program, elect board members and carry on other business as required by the SWQC.

• Other meetings determined to be necessary may be established by the Technical Board.

Finances and Budget

- The finances required to meet the operating expenses of the council shall be designated by the Executive Board of the WQC.
- The budget shall be presented for membership approval at the annual meeting.

Amendments

- Amendments to the policy and operation procedure of the SWQC can be made by majority vote of the council members present.
- The proposed changes must be submitted in writing and must be in the hands of the membership two weeks prior to voting on the change.

Group	Entry Name	Location	Breeder/Contact	Institution/Company	Class
1	15VTK1-101	Lanexa, VA	Nicholas	Virginia Polytech	SRW
1	16VDH-SRW03-23	Lanexa, VA	Santantonio		SRW
1	17VDH-SRW05-169	Lanexa, VA			SRW
1	VA19FHB-36	Lanexa, VA			SRW
1	VA19W-29	Lanexa, VA			SRW
1	Branson*	Lanexa, VA			SRW
1	Hilliard*	Lanexa, VA			SRW
2	Beck 705	Wooster, OH	Trek Murray	Beck's Hybrids	SRW
2	Beck 720	Wooster, OH			SRW
2	Beck 722	Wooster, OH			SRW
2	Beck 724	Wooster, OH			SRW
2	Beck 725	Wooster, OH			SRW
2	Beck 727	Wooster, OH			SRW
2	Beck 732	Wooster, OH			SRW
2	Branson*	Wooster, OH			SRW
2	Hilliard*	Wooster, OH			SRW
3	MI16W0133	Wooster, OH	Eric Olson	Michigan State U.	SWW
3	Whitetail*	Wooster, OH			SWW

WQC 2023 Crop Year Entries and Contributing Breeding Programs

Description of Entries

15VTK1-101

Line 15VTK-1-101 is a high-yielding, mid to full season, short stature semi-dwarf (Rht2) soft red winter wheat adapted to the mid-Atlantic and southern US. Line 15VTK-1-101 is a doubledhaploid derived from the cross VA11W-106 / VA12W-54, completed in spring of 2015. VA11W-106 was released as `L11550' in 2016 and has the pedigree `Jamestown' / `Pioneer 25R47'. VA12W-54 is a sibling of `USG 3118' (released 2017), with the pedigree NC00-15389 / GF951079-2E31 // `USG 3555'. Line 15VTK-1-101 has average test weight and good milling and baking qualities. Line 15VTK-1-101 expresses high levels of resistance to powdery mildew and leaf rust, moderate resistance to Fusarium Head Blight and stripe rust and Barley Yellow Dwarf Virus. Line 15VTK-1-101 has the H13 allele for hessian fly resistance, and has demonstrated excellent resistance to Hessian fly, a growing problem in the southern US. Line 15VTK-1-101 is awned, with strap blue-green heads, an erect twisted waxy blue-green flag leaf, yellow anthers, yellow straw, and white chaff. Mean head emergence of 15VTK-1-101 in Virginia is average (121 d) similar to `USG 3673', and one day earlier than than `Shirley' (PI 656753). Mean plant height is short at 31 inches, similar to that of 'Pioneer 26R59', 5 inches shorter than `Hilliard'. Straw strength (0 = erect to 9 = completely lodged) is average at 1.8 across three years in Virginia. Across three years in the Virginia Tech Official Variety Test, 15VTK-1-101 ranked first in mean grain yield (97.1 bu/ac) from 2021 to 2023 across 17 siteyears.

16VDH-SRW03-23

Line 16VDH-SRW03-023 is a soft red winter (SRW) wheat variety developed by Virginia Tech with support from the US Wheat and Barley Scab Initiative. It is a doubled haploid line derived from the cross Pioneer 26R10 / VA10W-96 // GA03564-12E6. Line 16VDH-SRW03-023 is a high yielding semi-dwarf wheat line with early maturity, higher test weight, average height, excellent leaf rust resistance and moderate resistance to powdery mildew and Septoria. 16VDH-SRW03-018 has a grain yield similar to that of USG3673 and Hilliard as evaluated across three years, 2021-2023, in the Virginia official variety test across, and has moderate resistance to head scab. 16VDH-SRW03-023 is awnletted with green, strapped heads and has similar milling and baking quality to Hilliard. Line 16VDH-SRW03-023 ranked 1st in the 2021 USDA-ARS Uniform Eastern SRW wheat nursery for grain yield among 46 entries evaluated over 19 locations.

17VDH-SRW05-169

Line 17VDH-SRW05-169 is a high yielding, early, short semi-dwarf soft red winter wheat adapted to the southern US. This double-haploid line was derived from the cross L11550 / VA09MAS6-122-7-1. Line 17VDH-SRW05-169 has excellent resistance to powdery mildew and leaf rust, but is moderately susceptible to fusarium head blight, and is susceptible to hessian fly. Line 17VDH-SRW05-169 was 6th for grain yield in the 2023 Uniform Southern soft red winter wheat nursery, taking first place in Florence. SC and performing particularly well in LA, MS, and IN. Due to excellent performance in the southern region, but poor resistance to hessian fly, this line was dropped from the breeding program in 2023.

VA19FHB-36

VA19FHB-36 is a early, high-yielding, high test weight, semi-dwarf (Rht2) soft red winter wheat broadly adapted to the Eastern US. VA19FHB-36 was derived from the cross SS 8340 / 12V51 // Hilliard completed in spring of 2014. VA19FHB-36 has demonstrated high levels of resistance to leaf rust and powdery mildew, as well as moderate resistance to Fusarium Head Blight and Barley Yellow Dwarf Virus. Line VA19FHB-36 is similar in heading date (118 days) but has higher test weight (58.5 lb/bu) than Hilliard (57.5 lb/bu). It is also tall (39 inches), approximately two inches taller than Hilliard. Line VA19FHB-36 is awned, with strap yellow-green heads, yellow anthers, yellow straw, and white chaff. Across two years in the Virginia Tech Official Variety Test, VA19FHB-36 ranked tenth in mean grain yield (120.4 bu/ac) from 2022 to 2023 across 10 site-years. It performed particularly well in the Missouri state trials, ranking 8th and 13th for grain yield in the South West and South East regions of the state.

VA19W-29

VA29W-29 is an early, high-yielding, semi-dwarf (Rht2) soft red winter wheat broadly adapted to the Eastern US. VA29W-29 was derived from the cross GA031134-10E29 / Hilliard completed in spring of 2014. VA29W-29 has average test weight and is similar in heading date to Hilliard. VA19W-29 has demonstrated high to moderate resistance to powdery mildew, but is moderately susceptible to leaf rust and Fusarium Head Blight. It is taller than average (35 inches), approximately one inches shorter than Hilliard. Line VA29W-29 is awned, with strap yellow-green heads, purple anthers, yellow straw, and white chaff. Across three years in the Virginia Tech Official Variety Test, VA29W-29 ranked fifth in mean grain yield (95.0 bu/ac) from 2021 to 2023 across 17 site-years.

Branson

Branson is a soft red winter wheat bred and developed by AgriPro Wheat. Branson is a medium height semi dwarf variety with good straw strength. Branson is moderately resistant to Septoria Leaf Blotch and Stripe rust and Powdery Mildew. Intermediate resistance to Soil borne Mosaic virus and Leaf rust. Primary adaptation is the wheat growing regions of Missouri, Illinois, Indiana, Michigan, and Ohio. Juvenile growth habit is semi erect. Plant color at boot stage is dark green. Flag leaf at boot stage is erect and twisted. Waxy bloom is present on the head, stem and flag leaf sheath. Anther color is yellow. Head shape is strap, mid-dense and awnletted. Glumes are glabrous, narrow in width and long in length with oblique shoulders and obtuse beaks. Seed shape is ovate. Brush hairs are mid-long in length and occupy a large area of the seed tip. Seed crease depth is shallow and width is narrow. Seed cheeks are rounded. Branson has been uniform and stable since 2003. Less than 0.8% of the plants were rouged from the Breeders Seed increase in 2004. Approximately 90% of the rouged variant plants were taller height wheat plants (8 to 15 cm) and 10% were awned plants. AgriPro Wheat maintains seed stock and certified classes of Foundation, Registered and Certified. Certified seed stocks of Branson will be available in the fall of 2005. Certified acreage is not to be published by AOSCA and certifying agencies. Plant Variety Protection is anticipated and Branson may only be sold as a class of certified seed.

Hilliard

Soft red winter (SRW) wheat cultivar Hilliard (VA11W-108) was derived from the cross Pioneer Brand '25R47' (PI 631473) / 'Jamestown' (PI 653731). Hilliard was derived as a bulk of an F5:6 headrow selected in 2010 and has been evaluated over five years (2013 – 2017) in Virginia's

State Variety Trials and throughout the soft red winter (SRW) wheat region in the 2014, 2016, and 2017 USDA-ARS Uniform Southern and Uniform Eastern Soft Red Winter Wheat Nurseries.

Hilliard is a broadly adapted, high yielding, mid-season, medium height, awned, semi-dwarf (gene Rht2) SRW wheat. In the southern SRW wheat region, head emergence of Hilliard (121d) has been similar to that of 'USG 3555' and 3 days later than Jamestown. In the eastern SRW wheat region, head emergence of Hilliard (136 d) was 1 day later than 'Branson' and 1.5 d earlier than 'Shirley'. Average mature plant height of Hilliard throughout the SRW wheat region has varied from 34 to 38 inches. In the 2014 Uniform Southern and Uniform Eastern nurseries, plant height of Hilliard (34 inches) was 2 inches shorter than checks 'AGS 2000' and MO_080104 and 2.5 to 3.5 inches taller than Shirley. Straw strength (0=erect to 9=completely lodged) of Hilliard (0.2 - 2.3) is very good and similar to that of Shirley (0.6 - 2.5). In the Uniform Eastern Nursery, winter hardiness (0 = no injury to 9 = severe injury) of Hilliard (2.2) was similar to that of the checks (1.8 - 2.9), while in the Uniform Southern Nursery, its winter injury (4.0) was less than that of the checks (5.4 - 6.5).

Hilliard was evaluated at 21 sites in the 2014 USDA-ARS Uniform Southern SRW Wheat Nursery and ranked second among 33 entries for grain yield (84 bu/ac). Average test weight of Hilliard (55.8 lb/bu) was similar to the overall trial mean and significantly (P < 0.05) higher than that of USG 3555 (54.4 lb/bu). Hilliard also was evaluated at 21 locations in the 2014 USDA-ARS Uniform Eastern SRW Wheat Nursery, and ranked first in grain yield within the eastern wheat region (87.6 lb/bu) and second over all test sites (86.9 lb/bu). Average test weight of Hilliard (56.9 lb/bu) was similar to the overall trial mean, and significantly (P < 0.05) higher than those of Branson (55.8 lb/bu) and Shirley (54.7 lb/bu).

Grain samples of Hilliard produced in five crop environments (2012 - 2014) were evaluated for end use quality by the USDA-ARS Soft Wheat Quality Lab. Hilliard has exhibited milling and baking qualities that are intermediate between those of Jamestown and USG 3555. Jamestown has better milling quality attributes than Hilliard or USG 3555, while both Jamestown and Hilliard have superior baking quality compared to USG 3555. While flour of Hilliard has the lowest grain protein content, it has slightly stronger gluten strength than Jamestown or USG 3555.

Hilliard is a widely adapted, mid-season wheat variety with good winter hardiness. It has high grain yield potential, good straw strength, and has performed well over most of the eastern SRW wheat production areas. With the exception of stem rust, Hilliard has expressed moderate to high levels of resistance to diseases prevalent in the SRW wheat region. These include powdery mildew, leaf rust, stripe rust, leaf and glume blotch, bacterial leaf streak, Soil Borne Mosaic Virus, Barley and Cereal Yellow Dwarf Viruses, Fusarium head blight, and Hessian fly.

SOFT RED WINTER WHEAT

Ultra-Early

STRENGTHS

This new double-crop specialist offers exceptional fall establishment and world-class winterhardiness for every acre. This versatile option has an outstanding disease package for dependable yield and quality at harvest.

GENERAL CHARACTERISTICS		
Exp #	5903	
15" Row Adaptability	7	
Rel. Maturity (to Clark)	-2	
Seed Size	12,000	
Fungicide Resp.	Med.	
Test Weight	7	
Awns	Awns (Bearded)	
Double Crop	9	

MANAGEMENT TIPS

- Excellent head scab tolerance
- Tremendous winterhardiness
- Minimal residue for double crop

PLANT TRAITS	
Standability	7
Tillering	7
Plant Height	Medium
Winterhardiness	9
Fall Growth	9
Plant Uniformity	8
Plant Color	Dark Green
Straw Yield	6

POSITIONING	AND ADAPT	ABILITY - BY	SOIL
Irrigated			
High			
Medium			-0
Low			
Poorly Drained			
200 A.C.	Excellent	Good	Not Recommended

SOIL PRODUCTIVITY

RECOMMENDED SEEDING POPULATION Seeds/A. (millions)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

*For late seeding (Oct 15), increase rates by 15%

Bu /A

Tect Wt

YIELD COMPARISONS

Years Plots Brand

,	23	BECK 705	86.7	58.1	
۰,		BECK 702	80.9	59.4	
4	22	BECK 705	89.1	57.3	
-	сжо. 	BECK 120	88.6	56.6	
1 8	1		BECK 705	79.2	55.5
		Ploneer P25R50	78.2	55.8	

PLANT HEALTH TRAITS Stripe Rust 8 Septoria Leaf Blotch 8 Septoria Glume Blotch 7 Powdery Mildew 6 Leaf Rust 8 Head Scab 9 BYDV 7 SBWMV 7

Rating: 9 = Best

Early

STRENGTHS

PLANT TRAITS Standability

Tillering

Plant Height

BECK 720 takes versatility to a whole new level across Beck's entire marketing area. This variety delivers high disease resistance from start to finish for all productivity levels. Trust this variety to deliver a yield punch and high grain quality for any acre or management style.

MANAGEMENT TIPS

- · Excellent for wet-natured soils
- Tremendous fall establishment
- Stout agronomic disease package

GENERAL CHARACTERISTICS	
Exp #	5001
15" Row Adaptability	9
Relative Maturity (to Clark)	+1
Seed Size	11,900
Fungicide Response	Med.
Test Weight	8
Awns	Awns (Bearded)
Double Crop	8

AREA OF BEST ADAPTATION	
Highly Recommended Recommended	

	POSITIONING AND ADAPTABILITY - BY SOIL				
	Irrigated				
	High				
	Medium				
7	Low				
1	Poorly Drained				
9					

Excellent Good

SOIL PRODUCTIVITY

Not Recommended

RECOMMENDED SEEDING POPULATION

*For late seeding (Oct 15), increase rates by 15%

Bu./A

Test Wt.

YIELD COMPARISONS

Years Plots

2 32	BECK 720	93.3	58.3	
	-	BECK 726	90.4	56.1
2 32	BECK 720	94.9	58.3	
	BECK 727	91.1	58.0	
1 12	12	BECK 720	92.3	58.3
1 12		Pioneer P25R50	88.2	56.4

Brand

Winterhardiness	9
Fall Growth	9
Plant Uniformity	8
Plant Color	Med. Green
Straw Yield	8

PLANT HEALTH TRAITS	
Stripe Rust	7
Septoria Leaf Blotch	7
Septoria Glume Blotch	8
Powdery Mildew	9
Leaf Rust	6
Head Scab	9
BYDV	8
SBWMV	9

Rating: 9 = Best

Med. Tall

SOFT RED WINTER WHEAT

SOFT RED WINTER WHEAT

Early

STRENGTHS

This awnless variety offers high straw tonnage and great yield potential for multiple revenue streams. This variety has excellent head scab tolerance and high test weight as an ease-of-use type of product.

<mark>5901</mark>
7
+1
13,000
Low
9
No Awns
8

MANAGEMENT TIPS

- Consider a growth regulator in +100 Bu./A environments
- Excellent straw option with a smooth head type
- Low management type with strong head scab tolerance

POSITIONING AND ADAPTABILITY - BY SOIL			
Irrigated			
High			
Medium		1	
Low			
Poorly Drained			
	Excellent	Good	Not Recommended

SOIL PRODUCTIVITY

RECOMMENDED SEEDING POPULATION Seeds/A. (millions)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

Conventional									
No-Till									
Spreader									
	*For la	te se	edina	(Oct 1	5) inc	rease I	rates h	w 15%	

YIELD COMPARISONS

Years	Plots	Brand	Bu.(A	Test Wt.
3	55	BECK 722	89.7	58.8
~	20	BECK 721	87.1	57.7
2	40	BECK 722	90.6	58.0
20		BECK 120	86.8	55.5
1	74	BECK 722	91.2	58.5
	- 24	BECK 730	87.9	57.0

Rating	: 9	=	Best	
. concerning			0000	

PLANT HEALTH TRAITS

Septoria Leaf Blotch

Powdery Mildew

Septoria Glume Blotch

Stripe Rust

Leaf Rust

BYDV

SBWMV

Head Scab

PLANT TRAITS	
Standability	7
Tillering	7
Plant Height	Med. Tall
Winterhardiness	8
Fall Growth	8
Plant Uniformity	8
Plant Color	Med. Green
Straw Yield	9

8

7

8

7

7

9

8

6

SOFT RED WINTER WHEAT

Medium-Early

STRENGTHS

This new variety offers a competitive edge across acres and thrives in the heat of the southern portion of our marketing area. This versatility leader delivers the triple threat of standability, head scab tolerance, and top tier test weight.

GENERAL CHARACTERISTICS		
Exp #	5817	
15" Row Adaptability	9	
Rel. Maturity (to Clark)	+2	
Seed Size	13,000	
Fungicide Resp.	Med.	
Test Weight	9	
Awns	Awns (Bearded)	
Double Crop	7	

MANAGEMENT TIPS

- Industry-leading test weight
- Incredible consistency across acres
- 15 inch row adaptability

PLANT TRAITS	
Standability	8
Tillering	9
Plant Height	Med. Tall
Winterhardiness	7
Fall Growth	8
Plant Uniformity	8
Plant Color	Med. Green
Straw Yield	9

POSITIONING	AND ADAPT	ABILITY - BY	(SOIL
Irrigated			
High			
Medium			
Low			
Poorly Drained			
	Excellent	Good	Not Recommended

SOIL PRODUCTIVITY

RECOMMENDED SEEDING POPULATION Seeds/A. (millions)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

*For late seeding (Oct 15), increase rates by 15%

YIELD COMPARISONS

Years	Plots	Brand	Bu.IA	Test Wt.
3	57	BECK 724	89.8	59.4
		BECK 721	87.8	57.9
2	65	BECK 724	89.7	57.7
	100	BECK 726	87.3	55.7
1	120	BECK 724	81.9	55.1
		Ploneer P26R36	78.5	64.9

Rating: 9 =	Best
-------------	------

Stripe Rust

Leaf Rust

BYDV

SBWMV

Head Scab

PLANT HEALTH TRAITS

Septoria Leaf Blotch

Powdery Mildew

Septoria Glume Blotch

8

8

8

7

6

9

8

8

SOFT RED WINTER WHEAT

STRENGTHS

BECK 725 has an incredible yield punch tailored to higher management growers. This new outstanding variety brings enough heat to deliver potential new farm averages.

	_	
NONIO		

Prefers additional nitrogen

Excellent response to a foliar fungicide application

Wide footprint across Beck's entire marketing area

GENERAL CHARACTERISTICS	
Exp#	5101
15" Row Adaptability	7
Relative Maturity (to Clark)	+3
Seed Size	12,500
Fungicide Response	High
Test Weight	7
Awns	Awns (Bearded)
Double Crop	7

AREA OF BEST ADAPTATION	
Recommended	
Recommended	
	K / I [74 June]]

		High
PLANT TRAITS		Med
Standability	8	Low
Tillering	7	Poor
Plant Height	Medium	
Winterhardiness	8	
Fall Growth	7	
Plant Uniformity	7	RE
Plant Color	Med. Green	INL.
Straw Yield	7	

POSITIONING AND ADAPTABILITY - BY SOIL			
Irrigated			
High			
Medium			
Low			
Poorly Drained			
	Excelent	Good	Not Recommended

SOIL PRODUCTIVITY

COMMENDED SEEDING POPULATION Seeds/A. (millions)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

Conventional	
No-TIII	
Spreader	

5 7

9

7

5

9

7

8

*For late seeding (Oct 15), increase rates by 15%

YIELD COMPARISONS

Tears	Plots	Brand		THE WL
2	2 9H	BECK 725	101.5	58.2
· ·		86CX 128	960	58.4
1	12	86CX 725	950	57.8
		AgrikADX 505	93.7	60.0
1 12	BECK 725	950	5.4	
	-	Ploneer PotiRiti	81.2	58.3

SBWMV	
Rating: 9 = Best	

PLANT HEALTH TRAITS

Septoria Leaf Blotch

Powdery Mildew

Septoria Glume Blotch

Stripe Rust

Lear Rust

BYDV

Head Scab

727

SOFT RED WINTER WHEAT

DOWNLOAD A PDF FACTSHEET

STRENGTHS

This new home run hitting variety brings an exceptional yield punch in all yield environments with a gorgeous harvest look. This variety possesses quick canopy closure, dependable early growth, as well as excellent plant health for a wide range of management styles, bringing in bin busting yields.

MANAGMENT TIPS

- Versatile performer across soils
- Low response to a fungicide application
- Flexible harvest window

732

SOFT RED WINTER WHEAT

Medium-Late

STRENGTHS

This new agronomic all-star has it all. BECK 732 blends reliable yields in all productivity levels and management styles in our marketing area. This variety's winter hardiness combined with an extremely desirable disease package is ready for all adverse growing conditions.

GENERAL CHARACTERISTICS		
Exp #	5902	
15" Row Adaptability	9	
Rel. Maturity (to Clark)	+4	
Seed Size	13,000	
Fungicide Resp.	Low	
Test Weight	8	
Awns	Awns (Bearded)	
Double Crop	6	

MANAGEMENT TIPS

- Excellent foliar disease package
- Season-long standability
- Consistent performer in all acres

PLANT TRAITS	
Standability	8
Tillering	8
Plant Height	Medium
Winterhardiness	9
Fall Growth	8
Plant Uniformity	8
Plant Color	Dark Green
Straw Yield	7

POSITIONING	AND ADAPT	ABILITY - B	SOIL
Irrigated		1	
High			
Medium			
Low			
Poorly Drained			
- 5450 - 10	Excellent	Good	Not Recommended

SOIL PRODUCTIVITY

RECOMMENDED SEEDING POPULATION Seeds/A. (millions)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

Conventional No-Till Spreader

8

7

7

7

8

9

8

8

*For late seeding (Oct 15), increase rates by 15%

YIELD COMPARISONS

Years	Plots	Brand	BUJA	Test WL
,	20	BECK 732	91.5	57.4
1974		BECK 730	89.1	57.1
1	6	BECK 732	80.1	55.1
	-	Pioneer P25R50	78.2	55.8
		BECK 732	83.3	53.2
		Planeer P26R59	80.3	53.0

Rating: 9 = Best

Stripe Rust

Leaf Rust

BYDV

SBWMV

Head Scab

PLANT HEALTH TRAITS

Septoria Leaf Blotch

Powdery Mildew

Septoria Glume Blotch

MI16W0133

'MI16W0133' is a new **soft white winter wheat** variety developed by Michigan State University Wheat Breeding and Genetics. This variety is ideal for production in Michigan with high yield potential and excellent milling and baking quality. MI16W0133 has a high two-year grain yield higher than the commercial soft white winter wheat varieties Dyna-Gro 9242W, Jupiter and Ambassador. In 2019, grain yield for MI16W0133 ranked in the top 10% of commercial wheat varieties tested in Michigan in 2019 and #2 out of 39 entries in the Uniform Eastern Soft WhiteWinter Wheat Nursery tested in Richville, MI and New Haven, IN. MI16W0133 is susceptible to FHB and will require preventative fungicide applications. MI16W0133 has excellent resistance to Stagonospora Leaf Blotch due in part to the absence of the ToxA receptor Tsn1. Soilborne Mosaic Virus resistance in MI16W0133 is conferred by the Sbm1 gene. MI16W0133 has above average flour yield and meets all soft wheat quality specifications.

Whitetail*

'Whitetail' is a **soft white winter wheat** variety developed by Michigan State University Wheat Breeding and Genetics. This variety is ideal for production in Michigan with high yield potential and excellent milling and baking quality. Whitetail has the highest multi year grain yield average of soft white winter wheat across all Michigan testing locations. DON (deoxynivalenol) mycotoxin levels are lower than any commercially available soft white winter wheat variety. Flowering date is similar to commercial wheat varieties grown in Michigan. A short plant architecture allows for intensive management for high yield potential. Strong gluten and high flour yield give this variety gives this variety enhanced marketing potential.

Milling and Baking Results Reported by Collaborators and SWQL

Mill Stream Distribution by SWQL

	Group 1						
Mill Stream	15VTK1-101	16VDH-SRW03-	17VDH-	VA19FHB-36	VA19W-29	Branson*	Hilliard*
		23	SRW05-169				
1st Break	8.2	8.2	9.3	7.6	9.0	8.8	9.2
2nd Break	8.2	7.6	8.3	8.0	8.4	8.3	8.5
Grader	4.0	3.7	4.7	3.8	4.4	4.5	4.7
3rd Break	8.9	9.0	8.9	9.7	8.9	8.4	9.1
Total Break	29.2	28.5	31.2	29.1	30.7	30.0	31.4
1st Reduction	11.0	11.1	9.5	8.7	10.0	9.7	8.9
2nd Reduction	10.0	9.8	9.2	8.0	9.3	10.1	8.1
3rd Reduction	6.6	7.0	7.0	7.6	7.0	7.0	6.9
Duster	7.2	7.0	6.5	5.3	6.5	6.9	5.7
4th Reduction	4.4	4.7	4.7	4.9	4.4	4.6	4.3
5th Reduction	3.1	3.4	3.1	3.8	3.2	2.9	3.3
Total Reduction	42.3	43.1	39.9	38.3	40.3	41.2	37.2
Straight Grade	71.5	71.6	71.1	67.3	71.1	71.3	68.6
Haad Charts	75	7 0	6.0	Q /	()	7.2	0.0
Ded Dec	7.5	7.8	0.9	0.4 5.2	0.9	7.5	8.0
Red Dog	2.7	3.1	3.3	5.5	3.2	3.1	3.0
Tail Shorts	0.7	0.9	0.6	0.8	0.6	0.6	0.8
Bran	17.6	16.7	18.1	18.2	18.2	17.7	19.0
Total Byproduct	28.5	28.4	28.9	32.7	28.9	28.7	31.4

Table 1. Miag Multomat mill stream yields (%) of the WQC 2023 crop year entries by SWQL

Table 1-continued

							Group 2		
Mill Stream	Beck 705	Beck 720	Beck 722	Beck 724	Beck 725	Beck 727	Beck 732	Branson*	Hilliard*
1st Break	6.5	7.8	7.2	6.9	7.9	8.3	7.9	6.7	7.8
2nd Break	7.9	7.8	7.3	8.1	8.1	7.9	8.7	7.5	7.7
Grader	4.3	4.3	4.5	3.9	4.4	4.7	4.4	3.6	4.0
3rd Break	6.7	7.2	6.5	8.9	7.8	6.9	8.1	7.5	8.2
Total Break	25.4	27.1	25.5	27.7	28.1	27.7	29.1	25.3	27.6
1st Reduction	10.7	10.3	9.4	8.8	10.0	10.4	10.3	10.3	10.3
2nd Reduction	13.9	11.2	12.5	9.4	11.5	12.3	11.1	11.7	10.4
3rd Reduction	7.0	6.6	7.6	7.6	6.8	6.3	6.7	7.3	7.2
Duster	10.0	8.0	8.7	6.5	7.7	8.9	8.2	7.4	7.2
4th Reduction	4.7	4.1	5.3	4.7	4.3	3.7	4.0	4.7	4.3
5th Reduction	2.7	2.7	3.2	3.4	2.8	2.2	2.5	3.4	3.2
Total Reduction	49.0	42.9	46.7	40.3	43.2	43.8	42.8	44.8	42.7
Straight Grade	74.4	70.0	72.1	68.1	71.4	71.5	71.9	70.1	70.3
Head Shorts	6.2	6.4	6.1	7.4	6.6	5.8	5.9	7.1	6.2
Red Dog	1.5	1.9	2.0	3.6	1.9	1.4	1.7	2.4	2.4
Tail Shorts	0.7	0.6	0.5	0.7	0.6	0.5	0.4	0.7	0.5
Bran	17.2	21.1	19.2	20.3	19.5	20.8	20.2	19.8	20.6
Total Byproduct	25.6	30.0	27.9	31.9	28.6	28.5	28.1	29.9	29.7

Table 1-continued

-	Gro	up 3
Mill Stream	MI16W0133	Whitetail*
1st Break	8.0	8.1
2nd Break	8.0	8.7
Grader	4.1	4.5
3rd Break	7.6	7.5
Total Break	27.7	28.8
1st Reduction	11.8	10.2
2nd Reduction	11.6	11.3
3rd Reduction	6.2	6.9
Duster	8.2	7.4
4th Reduction	4.1	4.7
5th Reduction	2.7	3.2
Total Reduction	44.6	43.6
Straight Grade	72.3	72.4
Head Shorts	5.8	5.8
Red Dog	1.7	2.1
Tail Shorts	0.6	0.6
Bran	19.5	19.1
Total Byproduct	27.7	27.6

					SKCS Parameter			
Group	Entry	Test Weight (lb/bu)	Grain Falling Number	(% 12% mb)	Kernel	Kernel	Kernel	
		(10/04)	rumoer	(,0, 12,0 110)	Hardness	Diameter (mm)	Weight (mg)	
1	15VTK1-101	63.2	403	9.4	20.4	2.8	36.6	
1	16VDH-SRW03-23	62.5	416	9.2	17.9	2.8	38.1	
1	17VDH-SRW05-169	62.1	325	9.0	13.3	3.0	40.0	
1	VA19FHB-36	63.4	380	9.2	23.2	2.8	39.5	
1	VA19W-29	62.6	353	9.2	14.5	2.9	40.8	
1	Branson*	61.5	339	9.4	9.5	2.8	39.9	
1	Hilliard*	61.7	332	8.8	10.6	2.8	39.3	
2	Beck 705	59.6	380	9.1	21.9	2.6	30.2	
2	Beck 720	61.1	411	9.6	17.0	2.6	33.8	
2	Beck 722	61.5	361	8.3	17.0	2.6	33.1	
2	Beck 724	62.7	459	9.4	17.0	2.7	36.8	
2	Beck 725	61.0	336	7.9	20.2	2.5	30.9	
2	Beck 727	61.6	363	9.4	16.0	2.5	30.4	
2	Beck 732	60.4	386	8.9	17.2	2.4	30.5	
2	Branson*	60.2	419	9.2	25.0	2.7	34.8	
2	Hilliard*	61.7	388	9.0	20.6	2.6	34.0	
3	MI16W0133	58.2	329	8.7	19.6	2.7	34.6	
3	Whitetail*	59.7	354	8.3	12.5	2.8	37.6	

Wheat Grain and Flour Quality Characteristics

Table 2. Grain characteristics and SKCS parameters of the 2023 entries by USDA-ARS Soft Wheat Quality Laboratory

-		Mia	Miag Milling		at Milling
Group	Entry	Break Flour Yield	Straight Grade Flour	Softness	Flour Yield
Group	Entry	(%)	Yield (%)	Equivalence (%)	(%)
1	15VTK1-101	29.2	71.5	56.4	69.1
1	16VDH-SRW03-23	28.5	71.6	54.0	69.0
1	17VDH-SRW05-169	31.2	71.1	59.2	69.4
1	VA19FHB-36	29.1	67.3	54.6	66.2
1	VA19W-29	30.7	71.1	57.7	68.9
1	Branson*	30.0	71.3	58.6	69.1
1	Hilliard*	31.4	68.6	59.2	67.4
2	Beck 705	25.4	74.4	55.0	70.8
2	Beck 720	27.1	70.0	59.1	68.1
2	Beck 722	25.5	72.1	55.7	69.6
2	Beck 724	27.7	68.1	56.8	66.2
2	Beck 725	28.1	71.4	60.0	69.2
2	Beck 727	27.7	71.5	60.1	69.0
2	Beck 732	29.1	71.9	60.3	69.5
2	Branson*	25.3	70.1	54.5	67.4
2	Hilliard*	27.6	70.3	57.6	68.0
3	MI16W0133	27.7	72.3	59.7	70.0
3	Whitetail*	28.8	72.4	59.6	70.4

Table 3. Miag and Quadrumat milling parameters of the 2023entries by USDA-ARS Soft Wheat Quality Laboratory

Group	Entry	Moisture	Protein	Flour Ash	Starch Damage
Group	Entry	(%)	(%, 14% mb)	(%, 14% mb)	(%)
1	15VTK1-101	14.2	7.3	0.37	3.4
1	16VDH-SRW03-23	14.4	7.8	0.36	3.2
1	17VDH-SRW05-169	14.2	7.3	0.36	3.7
1	VA19FHB-36	14.2	7.6	0.37	2.8
1	VA19W-29	14.1	7.4	0.36	3.1
1	Branson*	14.1	7.8	0.35	3.2
1	Hilliard*	14.3	7.3	0.37	3.3
2	Beck 705	14.3	8.0	0.39	4.0
2	Beck 720	14.1	8.0	0.35	3.7
2	Beck 722	14.0	6.8	0.37	3.2
2	Beck 724	14.4	7.8	0.32	3.7
2	Beck 725	14.1	6.6	0.33	3.7
2	Beck 727	13.9	7.9	0.32	2.8
2	Beck 732	13.9	7.9	0.32	3.4
2	Branson*	14.0	7.8	0.34	4.1
2	Hilliard*	13.9	7.5	0.36	3.6
3	MI16W0133	14.3	7.1	0.34	3.1
3	Whitetail*	14.2	6.8	0.37	2.9

Table 4. Flour quality parameters of the 2023 entries by USDA-ARS Soft Wheat Quality Laboratory

Group	Entry		Solvent Retention	Capacity (%)	
Oloup	Entry	Water	Sodium Carbonate	Sucrose	Lactic Acid
1	15VTK1-101	54.0 ab	71.1cd	93.9 b	111.4 bc
1	16VDH-SRW03-23	54.5 ab	73.4 b	96.2 b	102.3 d
1	17VDH-SRW05-169	53.3 b	71.9 bc	96.7 b	113.1 bc
1	VA19FHB-36	56.3 a	77.0 a	104.5 a	127.8 a
1	VA19W-29	53.6 b	72.6 bc	97.3 b	117.6 b
1	Branson*	53.0 b	69.3 d	92.9 b	108.0 cd
1	Hilliard*	54.1 ab	73.4 b	97.7 b	111.1 bc
2	Beck 705	52.8 c	70.7 d	90.8 c	102.4 g
2	Beck 720	55.4 abc	77.8 b	108.2 a	134.4 b
2	Beck 722	52.7 c	74.2 c	94.3 bc	112.6 f
2	Beck 724	57.8 a	80.6 ab	104.8 a	147.4 a
2	Beck 725	55.2 abc	74.4 c	91.3 c	108.4 fg
2	Beck 727	53.8 bc	73.5 cd	94.5 bc	125.3 cd
2	Beck 732	55.2 abc	72.6 cd	93.2 c	131.5 bc
2	Branson*	57.7 a	82.5 a	105.1 a	114.5 ef
2	Hilliard*	55.6 ab	79.0 b	101.1 ab	121.6 de
3	MI16W0133	54.4 a	77.4 a	97.1 a	100.5 a
3	Whitetail*	52.4 a	75.7 a	94.6 a	99.7 a

Summaries and Statistics of Combined Cooperator Test Parameters

Table 5. Mean SRC test parameters and overall flour quality scores by six cooperators (n=6)^a

*Check varieties.

Group	Entry	Entry Damaged Starch Content (%)		Amylograph Peak Viscosity (BU)
1	15VTK1-101	4.2 a	370 a	619
1	16VDH-SRW03-23	4.2 a	360 a	570
1	17VDH-SRW05-169	4.1 a	308 b	423
1	VA19FHB-36	3.8 a	301 b	586
1	VA19W-29	3.8 a	325 b	443
1	Branson*	3.9 a	325 b	508
1	Hilliard*	3.8 a	314 b	457
2	Beck 705	4.5 a	366 b	552
2	Beck 720	4.1 a	383 ab	609
2	Beck 722	4.0 a	372 ab	542
2	Beck 724	4.5 a	406 a	695
2	Beck 725	4.3 a	310 c	417
2	Beck 727	3.7 a	379 ab	562
2	Beck 732	3.8 a	367 b	668
2	Branson*	4.7 a	371 ab	607
2	Hilliard*	4.1 a	378 ab	637
3	MI16W0133	3.8 a	315 a	310
3	Whitetail*	3.8 a	318 a	289

Table 6. Damaged starch content (n=2), flour falling number (n=2) and amylograph peak viscosity (n=1)^a

Grou	Entry				Alveograph	
р	Entry	Р	L	P/L Ratio	le	W
1	15VTK1-101	41	61	0.67	50.1	67
1	16VDH-SRW03-23	49	45	1.09	35.8	71
1	17VDH-SRW05-169	37	57	0.65	45.5	58
1	VA19FHB-36	53	71	0.75	50.2	85
1	VA19W-29	43	61	0.7	47.3	68
1	Branson*	33	71	0.46	43.3	50
1	Hilliard*	43	57	0.75	41.8	64
2	Beck 705	29	75	0 39	38.8	41
$\frac{2}{2}$	Beck 720	53	63	0.84	43.9	81
$\frac{2}{2}$	Beck 722	34	58	0.59	44 3	52
2	Beck 724	66	40	1.65	49.6	108
$\frac{1}{2}$	Beck 725	31	43	0.72	39.2	46
$\overline{2}$	Beck 727	35	73	0.48	48.5	56
$\overline{2}$	Beck 732	43	52	0.83	54.8	72
2	Branson*	58	60	0.97	37.7	85
2	Hilliard*	55	54	1.02	44.8	85
3	MI16W0133	32	59	0.54	33.0	43
3	Whitetail*	32	65	0.48	34.2	42

Table 7. Alveograph test parameters by a collaborator (n=1)

Group	Entry		Farino	graph	
Oloup	Entry	Water Absorption	Development Time	Stability	Mixing Tolerance
1	15VTK1-101	50.0	1.3	1.3	101.0
1	16VDH-SRW03-23	53.4	1.3	0.8	107.0
1	17VDH-SRW05-169	50.2	1.3	0.8	103.0
1	VA19FHB-36	52.1	1.4	1.9	77.0
1	VA19W-29	52.7	1.4	4.8	57.0
1	Branson*	52.3	1.3	7.5	53.0
1	Hilliard*	52.8	1.4	4.4	71.0
2	Beck 705	51.5	1.6	1.0	76.0
2	Beck 720	53.2	1.4	8.5	42.0
2	Beck 722	50.2	1.2	0.8	87.0
2	Beck 724	53.7	1.5	14.4	31.0
2	Beck 725	51.1	1.3	0.6	104.0
2	Beck 727	51.4	1.4	2.5	73.0
2	Beck 732	51.8	1.3	2.1	63.0
2	Branson*	55.7	1.5	4.1	60.0
2	Hilliard*	54.3	1.5	2.2	53.0
3	MI16W0133	51.9	1.6	1.1	124.0
3	Whitetail*	50.3	1.3	0.4	121.0

Table 8. Mean farinograph test parameters by two collaborators (n=1)^a

C		Mixograph			
Group	Entry	Absorption (%)	Peak Time (min)		
1	15VTK1-101	53.7 a	2.2 a		
1	16VDH-SRW03-23	53.4 a	1.2 a		
1	17VDH-SRW05-169	52.6 a	2.3 a		
1	VA19FHB-36	54.1 a	2.6 a		
1	VA19W-29	52.8 a	2.4 a		
1	Branson*	53.1 a	1.9 a		
1	Hilliard*	52.9 a	1.9 a		
2	Beck 705	52.7 a	2.7 a		
2	Beck 720	53.1 a	2.2 a		
2	Beck 722	52.0 a	2.8 a		
2	Beck 724	54.5 a	4.1 a		
2	Beck 725	52.4 a	3.0 a		
2	Beck 727	52.7 a	2.2 a		
2	Beck 732	53.5 a	3.3 a		
2	Branson*	53.4 a	1.9 a		
2	Hilliard*	54.0 a	2.0 a		
3	MI16W0133	52.8 a	1.8 a		
3	Whitetail*	51.9 a	1.9 a		

Table 9. Mean mixograph test parameters by two collaborators $(n=2)^a$

		Rapid Visco-Analyzer						
Group	Entry	Peak Time	Peak (cP)	Trough	Break-down	Setback	Final	Pasting
		(min)		(cP)	(cP)	(cP)	(cP)	Temperature (°C)
1	15VTK1-101	6.3 a	2951 b	2005 a	946 a	1360 a	3365 a	84.4 a
1	16VDH-SRW03-23	6.3 a	3000 a	1998 a	1002 a	960 a	3297 a	74.5 b
1	17VDH-SRW05-169	6.4 a	2599 e	1645 a	954 a	1078 a	2723 с	84.9 a
1	VA19FHB-36	6.3 a	2990 a	1919 a	1071 a	1281 a	3200 ab	81.2 ab
1	VA19W-29	6.2 a	2623 e	1662 a	961 a	1102 a	2764 с	84.0 a
1	Branson*	6.3 a	2793 d	1793 a	1000 a	1067 a	2860 bc	83.9 a
1	Hilliard*	6.2 a	2856 c	1814 a	1042 a	1112 a	2925 bc	82.8 a
2	Beck 705	6.3 a	2845 d	1883	962 a	1420 ab	3303 c	84.5 ab
2	Beck 720	6.4 a	2895	2043	852 a	1628 a	3671 ab	85.7 a
2	Beck 722	6.3 a	2963 b	1951	1011 a	1417 ab	3368 c	84.9 ab
2	Beck 724	6.5 a	2929	2177 a	752 a	1684 a	3862 a	84.9 ab
2	Beck 725	6.2 a	2701 e	1727 b	974 a	1131 b	2858 d	83.8 ab
2	Beck 727	6.4 a	2927	1942	984 a	1491 a	3433 bc	86.2 a
2	Beck 732	6.3 a	3193 a	2130	1063 a	1548 a	3678 ab	82.2 b
2	Branson*	6.4 a	3088	2076	1012 a	1492 a	3568 abc	86.0 a
2	Hilliard*	6.4 a	2991	2016	975 a	1574 a	3590 abc	85.0 ab
3	MI16W0133	6.3a	2455 a	1541 a	914 a	1085 a	2626 a	85.4 a
3	Whitetail*	6.3 a	2118 b	1423 a	695 a	1093 a	2516 a	85.1 a

Table 10. Mean (n=4) Rapid Visco-Analyzer (RVA) test parameters^a

		Sugar-snap Cookie (10-50D)				Sugar-snap C	Sugar-snap Cookie (10-52)	
Group	Entry		Thickness	W/T Ratio	Spread	Width	Top Grain	
-		width (mm)	(mm)	(mm)	Factor	(cm)	Score	
1	15VTK1-101	494 a	56 a	9.0 a	84 a	9.3 a	7.0 a	
1	16VDH-SRW03-23	473 a	62 a	7.9 a	74 a	9.0 b	5.5 a	
1	17VDH-SRW05-169	487 a	54 a	9.2 a	86 a	9.2 ab	6.0 a	
1	VA19FHB-36	478 a	60 a	8.3 a	78 a	9.1 ab	5.0 a	
1	VA19W-29	484 a	57 a	8.7 a	81 a	9.2 ab	6.0 a	
1	Branson*	494 a	55 a	9.3 a	87 a	9.3 a	6.0 a	
1	Hilliard*	492 a	55 a	9.1 a	84 a	9.1 ab	6.0 a	
2	Beck 705	485 ab	57 a	8.5 a	80 a	9.2 ab	6.0 a	
2	Beck 720	484 ab	57 a	8.7 a	82 a	8.9 d	6.0 a	
2	Beck 722	492 ab	55 a	9.2 a	86 a	9.2 bc	6.5 a	
2	Beck 724	471 ab	63 a	7.7 a	73 a	9.0 cd	5.0 a	
2	Beck 725	493 ab	55 a	9.3 a	87 a	9.4 a	6.0 a	
2	Beck 727	494 a	56 a	9.2 a	86 a	9.2 bc	5.5 a	
2	Beck 732	489 ab	55 a	9.2 a	86 a	9.2 ab	6.5 a	
2	Branson*	471 b	60 a	8.0 a	75 a	8.9 d	5.5 a	
2	Hilliard*	481 ab	60 a	8.3 a	77 a	9.1 bc	5.0 a	
2	NUL (NUC122	407	50	0.5	00	0.1	C 0	
5	MI16W0133	48/a	52 a	9.5 a	89 a	9.1 a	6.U a	
3	Whitetail*	493 a	52 a	9.7 a	90 a	9.3 a	6.0 a	

Table 11. Mean sugar-snap cookie test (AACCI Approved Methods 10-50D (n=4) & 10-52 (n=2)) parameters^a

Group	Entry —		Biscuit	
		Width (mm)	Height (mm)	Weight (g)
1	15VTK1-101	394	290	199
1	16VDH-SRW03-23	400	288	203
1	17VDH-SRW05-169	393	271	191
1	VA19FHB-36	387	290	197
1	VA19W-29	393	301	208
1	Branson*	389	294	196
1	Hilliard*	383	271	190
2	Beck 705	390	318	199
2	Beck 720	386	330	212
2	Beck 722	392	254	171
2	Beck 724	385	275	195
2	Beck 725	400	254	197
2	Beck 727	391	260	189
2	Beck 732	336	241	161
2	Branson*	385	304	212
2	Hilliard*	379	273	187
3	MI16W0133	30/	275	103
3	Whitetail*	395	273	193

Table 12. Biscuit quality parameters by a collaborator (n=1)^a

Group	Entry	Sponge Cake			
		Volume (mL)	Texture Score		
1	15VTK1-101	1205 ab	20.0 a		
1	16VDH-SRW03-23	1129 b	19.5 a		
1	17VDH-SRW05-169	1217 ab	20.5 a		
1	VA19FHB-36	1235 ab	22.0 a		
1	VA19W-29	1265 a	21.5 a		
1	Branson*	1218 ab	21.0 a		
1	Hilliard*	1261 a	22.0 a		
2	Beck 705	1211 a	21.0 a		
2	Beck 720	1216 a	21.0 a		
2	Beck 722	1224 a	21.0 a		
2	Beck 724	1122 b	21.5 a		
2	Beck 725	1244 a	23.0 a		
2	Beck 727	1222 a	21.5 a		
2	Beck 732	1217 a	22.5 a		
2	Branson*	1153 b	20.0 a		
2	Hilliard*	1220 a	22.0 a		
3	MI16W0133	1197 a	22.0 a		
3	Whitetail*	1207 a	22.5 a		

Table 13. Mean (n=2) sponge cake baking test parameters^a

*Check varieties.

Group	Entry	Flour Score	Cookie Score	Sponge Cake Score
1	15VTK1-101	7.3 a	7.0 a	5.5 a
1	16VDH-SRW03-23	6.7 a	5.8 a	4.8 a
1	17VDH-SRW05-169	7.4 a	7.8 a	6.0 a
1	VA19FHB-36	6.6 a	6.0 a	5.8 a
1	VA19W-29	7.4 a	6.6 a	6.0 a
1	Branson*	7.9 a	6.6 a	5.8 a
1	Hilliard*	7.0 a	6.0 a	7.0 a
2	Beck 705	7.1 a	6.4 abc	6.0 ab
2	Beck 720	6.9 a	5.6 bc	5.5 ab
2	Beck 722	6.9 a	7.0 abc	6.5 a
2	Beck 724	6.4 a	5.2 c	5.0 b
2	Beck 725	6.9 a	7.6 ab	6.0 ab
2	Beck 727	7.6 a	6.6 abc	5.5 ab
2	Beck 732	7.4 a	8.0 a	6.8 a
2	Branson*	6.7 a	5.0 c	5.0 b
2	Hilliard*	7.0 a	5.4 bc	6.3 ab
3	MI16W0133	6.9 a	7.4 a	5.3 b
3	Whitetail*	7.0 a	7.6 a	7.0 a

Table 14. Mean flour (n=7), cookie (n=5) and sponge cake (n=2) quality scores^a
Cooperator Data for Each Quality Test Parameter

Group	Entry	Ardent	Mennel	Kellanova	Mondelez	Star of West	SWQL	WWQL	Mean	STDEV
1	15VTK1-101	52.2	54.6	52.7	54.1	54.1	54.1	56.2	54.0	1.29
1	16VDH-SRW03-23	53.4	55.2	55.0	51.8	55.0	56.2	55.1	54.5	1.47
1	17VDH-SRW05-169	51.8	53.8	51.9	51.6	52.7	53.4	57.6	53.3	2.09
1	VA19FHB-36	54.0	55.8	55.4	54.2	56.4	57.2	60.9	56.3	2.32
1	VA19W-29	51.3	54.5	52.8	52.2	53.1	53.9	57.4	53.6	1.97
1	Branson*	51.0	50.8	52.5	50.3	51.9	53.3	61.0	53.0	3.68
1	Hilliard*	53.2	53.5	53.7	51.1	54.3	55.6	57.0	54.0	1.86
2	D 1 705	50.1	52.6	50 7	10 5	52.2	50 0		52.0	0.50
2	Beck 705	52.1	53.6	50.7	49.5	53.2	52.8	57.5	52.8	2.53
2	Beck 720	54.4	56.9	54.4	54.3	56.3	56.8	54.8	55.4	1.20
2	Beck 722	52.8	53.3	51.0	51.4	53.1	53.9	53.5	52.7	1.10
2	Beck 724	56.6	56.7	56.0	55.8	58.0	59.2	62.4	57.8	2.34
2	Beck 725	54.3	53.8	52.6	53.4	54.7	56.6	60.9	55.2	2.82
2	Beck 727	52.6	53.0	51.6	53.4	53.0	54.4	58.9	53.8	2.39
2	Beck 732	53.1	52.9	52.3	53.4	54.2	55.5	64.8	55.2	4.38
2	Branson*	56.6	58.0	55.3	55.2	57.0	58.3	63.2	57.7	2.71
2	Hilliard*	53.8	54.2	54.2	55.1	55.8	57.4	59.0	55.6	1.92
3	MI16W0133	53.2	53.8	51.8	52.1	52.6	55 3	617	511	3 15
3	Whitetail*	53.2 51.5	52.0	50.8	51.0	54.0	55.5 54.4	53.0	54.4 52.4	1.44

Table 15. Water SRC ((%)) of 2023 W	QC entries b	y coo	perators

Group	Entry	Ardent	Mennel	Kellanova	Mondelez	Star of West	SWQL	WWQL	Mean	STDEV
1	15VTK1-101	70.2	68.2	69.4	73.0	71.6	75.2	70.0	71.1	2.37
1	16VDH-SRW03-23	73.0	71.6	72.7	74.2	73.8	76.2	72.6	73.4	1.46
1	17VDH-SRW05-169	70.5	70.9	69.7	77.2	71.2	73.2	70.9	71.9	2.54
1	VA19FHB-36	76.6	75.9	75.3	78.9	77.7	78.6	75.9	77.0	1.42
1	VA19W-29	71.7	71.3	70.8	75.3	72.3	73.8	73.1	72.6	1.57
1	Branson*	66.8	67.0	67.7	72.0	69.9	71.1	70.4	69.3	2.09
1	Hilliard*	73.0	72.1	71.8	76.9	72.7	75.3	72.1	73.4	1.93
2	Beck 705	68.2	69.6	68.3	75.6	71.6	72.8	69.0	70.7	2.75
2	Beck 720	66.4	77.6	77.7	82.3	80.2	80.8	79.9	77.8	5.30
2	Beck 722	77.7	69.9	69.6	78.8	78.2	74.8	70.3	74.2	4.17
2	Beck 724	80.4	78.7	78.1	85.0	81.0	82.3	78.9	80.6	2.42
2	Beck 725	73.0	73.7	72.4	78.0	74.7	76.5	72.3	74.4	2.18
2	Beck 727	73.0	73.4	70.8	76.7	73.2	74.8	72.4	73.5	1.86
2	Beck 732	74.2	71.3	69.9	74.8	72.7	74.8	70.4	72.6	2.10
2	Branson*	82.1	80.6	79.9	87.2	82.8	83.7	81.3	82.5	2.42
2	Hilliard*	79.6	78.6	76.8	81.5	78.9	80.0	77.5	79.0	1.57
3	MI16W0133	76.7	75.1	75.2	82.6	75.3	79.7	77.0	77.4	2.82
3	Whitetail*	75.1	73.9	73.0	79.9	78.7	76.6	73.0	75.7	2.75

Table 16. Sodium Carbonate SRC (%) of 2023 WQC entries by cooperators

Group	Entry	Ardent	Mennel	Kellanova	Mondelez	Star of West	SWQL	WWQL	Mean	STDEV
1	15VTK1-101	89.3	87.5	91.4	108.3	95.4	89.9	95.5	93.9	7.02
1	16VDH-SRW03-23	93.7	93.0	95.7	103.3	96.9	92.3	98.2	96.2	3.81
1	17VDH-SRW05-169	93.2	92.7	93.3	108.8	97.5	92.5	99.1	96.7	5.92
1	VA19FHB-36	99.0	99.3	101.3	117.6	108.4	99.8	106.3	104.5	6.81
1	VA19W-29	95.3	93.3	95.8	108.6	97.4	93.8	96.6	97.3	5.20
1	Branson*	89.8	89.1	92.6	103.9	92.0	89.9	92.8	92.9	5.09
1	Hilliard*	94.1	92.4	94.5	114.7	96.2	93.2	99.1	97.7	7.79
2	Beck 705	88.2	87.8	88.0	100.5	89.5	88.2	93.3	90.8	4.69
2	Beck 720	104.3	101.3	104.8	124.5	111.2	102.4	108.6	108.2	8.00
2	Beck 722	93.6	88.8	90.8	108.1	93.9	90.4	94.7	94.3	6.44
2	Beck 724	99.9	98.6	99.5	121.7	106.6	101.8	105.4	104.8	8.04
2	Beck 725	90.2	86.1	88.5	102.5	91.8	87.9	92.4	91.3	5.40
2	Beck 727	92.3	87.3	91.7	109.8	93.5	92.0	95.2	94.5	7.15
2	Beck 732	90.7	88.3	90.6	104.8	94.2	89.6	94.1	93.2	5.56
2	Branson*	102.3	99.7	101.5	120.3	104.5	102.0	105.7	105.1	6.99
2	Hilliard*	96.9	93.4	100.1	115.9	100.7	97.7	103.2	101.1	7.22
3	MI16W0133	93.9	94.2	93.1	112.5	92.7	93.2	99.9	97.1	7.25
3	Whitetail*	90.6	88.6	89.5	109.1	97.5	90.7	96.3	94.6	7.25

Table 17. Sucrose SRC (%) of 2023 WQC entries by cooperators

Group	Entry	Ardent	Mennel	Kellanova	Mondelez	Star of West	SWQL	WWQL	Mean	STDEV
1	15VTK1-101	116.5	114.9	118.2	100.7	116.2	107.3	106.3	111.4	6.63
1	16VDH-SRW03-23	106.2	106.3	108.8	96.8	102.4	99.6	95.9	102.3	5.04
1	17VDH-SRW05-169	116.7	119.4	119.6	100.2	115.2	111.9	109.0	113.1	6.87
1	VA19FHB-36	129.6	132.7	132.8	118.5	133.2	123.9	123.9	127.8	5.75
1	VA19W-29	121.9	122.5	123.9	103.3	120.4	115.7	115.8	117.7	7.08
1	Branson*	113.3	109.8	115.7	94.2	111.3	106.9	104.5	108.0	7.13
1	Hilliard*	117.3	116.7	116.4	95.8	115.0	108.3	108.4	111.1	7.77
2	Beck 705	109.3	108.7	107.3	86.9	105.2	102.8	96.6	102.4	8.11
2	Beck 720	138.4	137.6	148.5	123.4	137.1	129.3	126.7	134.4	8.55
2	Beck 722	116.2	114.9	118.5	105.3	115.7	112.2	105.2	112.6	5.32
2	Beck 724	146.5	149.4	159.7	135.9	155.5	140.0	144.5	147.3	8.34
2	Beck 725	111.8	114.6	116.3	93.7	110.5	107.9	103.7	108.4	7.70
2	Beck 727	127.2	127.9	137.9	113.6	130.6	121.6	118.3	125.3	8.15
2	Beck 732	131.1	131.0	140.1	128.6	138.4	125.1	126.0	131.5	5.79
2	Branson*	120.7	118.4	124.6	99.5	119.0	112.2	107.2	114.5	8.75
2	Hilliard*	126.4	126.5	132.9	106.0	123.5	120.9	115.2	121.6	8.77
3	MI16W0133	104.7	106.9	104.0	89.9	102.2	99.9	95.7	100.5	5.92
3	Whitetail*	103.6	102.3	104.5	90.3	101.9	100.4	94.8	99.7	5.20

Table 18. Lactic acid SRC (%) of 2023 WQC entries by cooperators

Group	Entry	ADM	Ardent	Mennel	Star of West	Mean	STDEV
1	15VTK1-101	501.5	512.1	487.5	475.5	494.2	16.00
1	16VDH-SRW03-23	477.5	489.7	471.0	452.5	472.7	15.52
1	17VDH-SRW05-169	498.5	493.8	485.0	469.0	486.6	12.98
1	VA19FHB-36	491.5	489.5	477.5	453.0	477.9	17.70
1	VA19W-29	494.0	492.6	486.5	462.5	483.9	14.64
1	Branson*	502.5	506.6	493.0	473.0	493.8	14.97
1	Hilliard*	502.5	500.5	493.0	472.0	492.0	13.94
2	Beck 705	501.5	478.5	484.5	474.0	484.6	12.04
2	Beck 720	496.5	497.0	478.5	464.0	484.0	15.86
2	Beck 722	501.5	504.4	486.5	477.0	492.3	12.89
2	Beck 724	476.5	488.6	467.5	451.0	470.9	15.85
2	Beck 725	503.5	499.7	488.5	480.5	493.0	10.51
2	Beck 727	506.5	511.9	491.5	465.0	493.7	21.02
2	Beck 732	505.5	499.0	485.0	466.0	488.9	17.49
2	Branson*	474.5	488.7	470.0	450.0	470.8	16.01
2	Hilliard*	488.5	494.5	478.5	460.5	480.5	14.87
3	MI16W0133	496.5	493.4	485.4	471.5	486.7	11.16
3	Whitetail*	508.5	500.8	482.5	479.5	492.8	14.07

Table 19. Sugar-snap cookie (10-50) diameter (mm) of 2023 WQC entries by cooperators

Group	Entry	SWQL	WWQL	Mean	STDEV
1	15VTK1-101	9.3	9.3	9.3	0.00
1	16VDH-SRW03-23	8.9	9.1	9.0	0.14
1	17VDH-SRW05-169	9.2	9.2	9.2	0.02
1	VA19FHB-36	9.0	9.2	9.1	0.15
1	VA19W-29	9.2	9.1	9.2	0.04
1	Branson*	9.2	9.4	9.3	0.13
1	Hilliard*	9.2	9.0	9.1	0.15
2	Beck 705	9.2	9.2	9.2	0.03
2	Beck 720	8.9	8.8	8.9	0.03
2	Beck 722	9.1	9.2	9.2	0.04
2	Beck 724	9.0	9.0	9.0	0.01
2	Beck 725	9.4	9.3	9.3	0.08
2	Beck 727	9.2	9.1	9.2	0.07
2	Beck 732	9.1	9.3	9.2	0.14
2	Branson*	8.8	8.9	8.9	0.04
2	Hilliard*	9.1	9.0	9.1	0.04
3	MI16W0133	9.1	9.1	9.1	0.05
3	Whitetail*	9.1	8.8	9.0	0.20

Table 20. Sugar-snap cookie (10-52) diameter (cm) of 2023 WQC entries by cooperators

Group	Entry	WMC	WWQL	Mean	STDEV
1	15VTK1-101	1234	1175	1205	42
1	16VDH-SRW03-23	1173	1085	1129	62
1	17VDH-SRW05-169	1224	1209	1217	11
1	VA19FHB-36	1272	1198	1235	52
1	VA19W-29	1311	1219	1265	65
1	Branson*	1255	1180	1218	53
1	Hilliard*	1286	1236	1261	35
2	Beck 705	1239	1183	1211	40
2	Beck 720	1219	1213	1216	4
2	Beck 722	1232	1216	1224	11
2	Beck 724	1098	1146	1122	34
2	Beck 725	1240	1248	1244	6
2	Beck 727	1234	1210	1222	17
2	Beck 732	1211	1222	1217	8
2	Branson*	1145	1160	1153	11
2	Hilliard*	1228	1211	1220	12
3	MI16W0133	1208	1185	1197	16
3	Whitetail*	1205	1208	1207	2

Table 21. Sponge cake volume (mL) of 2023 WQC entries by cooperators

Group	Entry	ADM	Ardent	Kellanova	Mennel	Star of West	WMC	WWQL	Mean	STDEV
1	15VTK1-101	8	5	7	8	7	7	9	7.3	1.3
1	16VDH-SRW03-23	8	5	7	6	6	6	9	6.7	1.4
1	17VDH-SRW05-169	8	5	6	8	9	7	9	7.4	1.5
1	VA19FHB-36	8	6	8	6	5	7	6	6.6	1.1
1	VA19W-29	8	5	8	7	8	7	9	7.4	1.3
1	Branson*	8	5	9	9	9	7	8	7.9	1.5
1	Hilliard*	8	5	6	7	7	7	9	7.0	1.3
2	Beck 705	8	5	9	8	7	5	8	7.1	1.6
2	Beck 720	8	7	9	6	6	6	6	6.9	1.2
2	Beck 722	8	5	5	8	6	7	9	6.9	1.6
2	Beck 724	8	6	8	6	5	6	6	6.4	1.1
2	Beck 725	7	6	4	7	8	8	8	6.9	1.5
2	Beck 727	8	6	9	8	7	6	9	7.6	1.3
2	Beck 732	8	6	9	9	7	6	7	7.4	1.3
2	Branson*	8	7	8	6	7	6	5	6.7	1.1
2	Hilliard*	8	5	6	7	8	7	8	7.0	1.2
3	MI16W0133	7	5	5	7	9	7	8	6.9	1.5
3	Whitetail*	7	5	5	8	8	7	9	7.0	1.5

Table 22. Flour quality scores of 2023 WQC entries by cooperators

Group	Entry	ADM	Ardent	Mennel	Star of West	WWQL	Mean	STDEV
1	15VTK1-101	8	4	8	7	8	7.0	1.7
1	16VDH-SRW03-23	7	5	6	5	6	5.8	0.8
1	17VDH-SRW05-169	9	6	8	9	7	7.8	1.3
1	VA19FHB-36	7	5	6	5	7	6.0	1.0
1	VA19W-29	8	5	8	6	6	6.6	1.3
1	Branson*	8	2	9	6	8	6.6	2.8
1	Hilliard*	8	1	9	7	5	6.0	3.2
2	Beck 705	8	1	9	7	7	6.4	3.1
2	Beck 720	8	5	7	5	3	5.6	1.9
2	Beck 722	8	5	8	8	6	7.0	1.4
2	Beck 724	7	5	6	4	4	5.2	1.3
2	Beck 725	8	7	7	9	7	7.6	0.9
2	Beck 727	8	8	7	4	6	6.6	1.7
2	Beck 732	9	7	8	8	8	8.0	0.7
2	Branson*	7	4	6	5	3	5.0	1.6
2	Hilliard*	7	2	8	6	4	5.4	2.4
3	MI16W0133	9	5	9	9	5	7.4	2.2
3	Whitetail*	9	7	8	9	5	7.6	1.7

Table 23. Cookie quality scores of 2023 WQC entries by cooperators

Group	Entry	WMC	WWQL	Mean	STDEV
1	15VTK1-101	7.0	4	5.5	2.1
1	16VDH-SRW03-23	6.5	3	4.8	2.5
1	17VDH-SRW05-169	7.0	5	6.0	1.4
1	VA19FHB-36	6.5	5	5.8	1.1
1	VA19W-29	7.0	5	6.0	1.4
1	Branson*	6.5	5	5.8	1.1
1	Hilliard*	7.0	7	7.0	0.0
2	Beck 705	7.0	5	6.0	1.4
$\overline{2}$	Beck 720	6.0	5	5.5	0.7
2	Beck 722	7.0	6	6.5	0.7
2	Beck 724	5.0	5	5.0	0.0
2	Beck 725	6.0	6	6.0	0.0
2	Beck 727	6.0	5	5.5	0.7
2	Beck 732	6.5	7	6.8	0.4
2	Branson*	5.0	5	5.0	0.0
2	Hilliard*	6.5	6	6.3	0.4
3	MI16W0133	5.5	5	5.3	0.4
3	Whitetail*	7.0	7	7.0	0.0

Table 24. Sponge cake quality scores of 2023 WQC entries by cooperators

		Ν	Test	Grain	Kernel	Flour	Softness	Flour	Water	Sodium	Sucrose	Lactic	Cookie
Group	Entry		Weight	Protein	Hard.	Yield	Equiv.	Protein	SRC	Carb.	SRC	Acid	Diameter
			(LB/BU)	(%)		(%)	(%)	(%)	(%)	SRC (%)	(%)	SRC (%)	(cm)
1	15VTK1-101	0											
1	16VDH-SRW03-23	0											
1	17VDH-SRW05-169	1-6	58.9	9.8	4.3	70.2	61.7	7.7	54.3	71.4	87.5	106.1	19.5
1	VA19FHB-36	1-5	60.5	9.9	21.7	66.4	56.3	7.7	58.1	76.8	96.9	126.1	18.6
1	VA19W-29	1-7	60.2	9.8	17.4	68.5	58.3	7.8	54.1	70.3	94.8	114.2	19.0
1	Branson*	69-317	59.7	10.6	6.0	69.2	61.6	8.3	52.3	66.9	91.2	108.8	18.8
1	Hilliard*	10-146	59.9	10.4	14.7	67.0	59.6	8.1	54.9	73.0	99.1	118.4	18.5
2	Beck 705	0											
2	Beck 720	0											
$\frac{-}{2}$	Beck 722	0 0											
2	Beck 724	0											
2	Beck 725	0											
2	Beck 727	2	59.8	10.4	13.3	68.9	63.7	8.4	51.6	67.1	89.2	104.7	19.1
2	Beck 732	0											
2	Branson*	69-317	59.7	10.6	6.0	69.2	61.6	8.3	52.3	66.9	91.2	108.8	18.8
2	Hilliard*	10-146	59.9	10.4	14.7	67.0	59.6	8.1	54.9	73.0	99.1	118.4	18.5
3	MI16W0133	4-7	57.5	10.0	13.2	69.2	62.2	7.8	52.6	69.2	89.3	103.8	19.1
3	Whitetail*	4-12	58.8	10.1	8.7	69.6	62.1	7.9	52.8	68.3	91.7	100.8	19.3

Table 25. Average wheat grain and flour quality characteristics of the 2023 crop Soft Wheat Quality Council entries between 2009 and 2022 crop years

Cooperator Data

ADM Milling Quality Evaluations Table 26. Sugar-snap cookie baking test parameters by ADM Milling

			Coo	kie (10-50D)	
Group	Entry	Width	Thickness	W/T Ratio	Spread
		(cm)	(cm)		Factor
1	15VTK1-101	50.2	5.9	8.50	83.0
1	16VDH-SRW03-23	47.8	6.9	6.92	68.0
1	17VDH-SRW05-169	49.9	5.6	8.90	87.0
1	VA19FHB-36	49.2	6.2	7.93	77.0
1	VA19W-29	49.4	6.0	8.23	80.0
1	Branson*	50.3	5.9	8.52	83.0
1	Hilliard*	50.3	5.9	8.52	83.0
2	Beck 705	50.2	5.8	8.65	85.0
2	Beck 720	49.7	6.0	8.28	82.0
2	Beck 722	50.2	5.6	8.96	88.0
2	Beck 724	47.7	6.3	7.56	74.0
2	Beck 725	50.4	5.7	8.83	87.0
2	Beck 727	50.7	6.1	8.30	82.0
2	Beck 732	50.6	5.6	9.03	89.0
2	Branson*	47.5	6.2	7.65	75.0
2	Hilliard*	48.9	6.6	7.40	73.0
2	MI16W0122	40.7	5 2	0.27	02.0
3	Whitetail*	49.7 50.0	5.5	9.37	92.0
3	winitetan.	50.9	5.0	9.08	09.0

		Analytic	al Flour Qu	ualities		End Product Performance				
		Score: 1 Poor - 9 Excellent				Score: 1 Poor - 91	Excellent			Aditional Comments
Group	Entry	Likes	Dislikes	Basis	Score	Product	Likes	Dislikes	Score	Mitigating Physical/Chemical Properties
1	15VTK1-101	Average protein & ash		Primary Analysis	8	Cookie	Good spread slight checking		8	Good dough/ spread equal to check
1	16VDH-SRW03-23	Highest protein &average ash		Primary Analysis	8	Cookie	Lowest spread of group	Slightly dry dough	7	Slight checking/ low spread factor/poorer than check
1	17VDH-SRW05-169	Average protein & ash		Primary Analysis	8	Cookie	Largest spread of group		9	Slight checking/ Nice spread/ Good dough
1	VA19FHB-36	Average protein & ash		Primary Analysis	8	Cookie	Average spread		7	Lower spread than check/ No checking
1	VA19W-29	Average protein & ash		Primary Analysis	8	Cookie	Average spread		8	Checking Nice spread
1	Branson*	Average protein & ash		Primary Analysis	8	Cookie	Average spread	Slightly dry dough	8	Performed well Slight checking Good dough
1	Hilliard*	Lowest protein, higher ash		Primary Analysis	8	Cookie	Average spread		8	Performed well Slight checking Good dough
2	Beck 705	Average protein Higher ash		Primary Analysis	8	Cookie	Average spread		8	Good dough Slight checking Nice spread
2	Beck 720	Average protein & ash		Primary Analysis	8	Cookie	Average spread		8	No checking Good dough Average spread
2	Beck 722	Lower protein & higher ash		Primary Analysis	8	Cookie	Larger spread		8	Lower protein Slight checking Nice spread
2	Beck 724	Average protein & lower ash		Primary Analysis	8	Cookie	Lower spread		7	No checking Good dough Lowest spread of group
2	Beck 725	Lower protein & lower ash		Primary Analysis	7	Cookie	Larger spread		8	Lowest protein in group Good dough Nice spread
2	Beck 727	Average protein & lower ash		Primary Analysis	8	Cookie	Average spread		8	Checking Good dough Average spread
2	Beck 732	Average protein & lower ash		Primary Analysis	8	Cookie	Largest spread of group		9	Nice spread Slight checking Better than check
2	Branson*	Average protein & ash		Primary Analysis	8	Cookie	Lower spread		7	Lowee spread No checking Good dough
2	Hilliard*	Average protein & ash		Primary Analysis	8	Cookie	Lower spread	Slightly dry dough	7	Lowest spread Checking Lower protein
3	MI16W0133	Lower protein lower ash		Primary Analysis	7	Cookie	Nice spread		9	No checking Good dough Nice spread
3	Whitetail*	Lower protein Higher ash		Primary Analysis	7	Cookie	Nice spread		9	Slight checking Good dough Nice spread

Table 27. Evaluation comments on flour quality and baked product performance by ADM Milling

Ardent Mills Quality Evaluations

Table 28. Solvent retention capacity and cookie baking test parameters by Ardent Mills

		So	lvent Retenti	on Capacit	y (%)		Cookies	(10-50D)	
Group	Entry	Water	Sodium	Sucrose	Lactic Acid	Width	Thickness	W/T	Spread
		_	Carbonate			(mm)	(mm)	Ratio	Factor
1	15VTK1-101	52.2	70.2	89.3	116.5	512.1	43.3	11.8	99.2
1	16VDH-SRW03-23	53.4	73.0	93.7	106.2	489.7	43.9	11.1	93.5
1	17VDH-SRW05-169	51.8	70.5	93.2	116.7	493.8	41.7	11.8	99.3
1	VA19FHB-36	54.0	76.6	99.0	129.6	489.5	42.5	11.5	96.7
1	VA19W-29	51.3	71.7	95.3	121.9	492.6	44.9	11.0	92.0
1	Branson*	51.0	66.8	89.8	113.3	506.6	42.2	12.0	100.8
1	Hilliard*	53.2	73.0	94.1	117.3	500.5	44.3	11.3	94.8
2	Beck 705	52.1	68.2	88.2	109.3	478.5	50.8	9.4	79.1
2	Beck 720	54.4	66.4	104.3	138.4	497.0	41.6	11.9	100.1
2	Beck 722	52.8	77.7	93.6	116.2	504.4	42.7	11.8	99.1
2	Beck 724	56.6	80.4	99.9	146.5	488.6	47.6	10.3	86.2
2	Beck 725	54.3	73.0	90.2	111.8	499.7	41.6	12.0	100.7
2	Beck 727	52.6	73.0	92.3	127.2	511.9	38.2	13.4	112.6
2	Beck 732	53.1	74.2	90.7	131.1	499.0	42.1	11.9	99.5
2	Branson*	56.6	82.1	102.3	120.7	488.7	47.5	10.3	86.3
2	Hilliard*	53.8	79.6	96.9	126.4	494.5	43.4	11.4	95.5
3	MI16W0133	53.2	76.7	93.9	104.7	493.4	40.6	12.1	101.9
3	Whitetail*	51.5	75.1	90.6	103.6	500.8	39.5	12.7	106.3

		Analytical Flour Qualities								
		Sc	ore: 1 Poor - 9 Excel	lent				Score: 1 Poor - 9 Excellent		Aditional Comments
Group	Entry	Likes	Dislikes	Basis	Score	Product	Likes	Dislikes	Score	Mitigating Physical/Chemical Properties
1	15VTK1-101	Low ash, slightly high LA	Low water	SRC, MAP	5	Cookie	Comparable spread to Branson check. Even cracking across the surface	Dough slightly dry and crumbly, sl cracking when rolled.	4	Cracker application suggested
1	16VDH-SRW03-23	Low ash	Low water	SRC, MAP	5	Cookie	Comparable spread to Hilliard check	Slightly uneven surface texture across cookies	5	
1	17VDH-SRW05-169	Low ash, slightly high LA	Low water	SRC, MAP	5	Cookie	Comparable spread to Branson check. Even cracking across the surface of the cookie, good browning		6	Cracker application suggested
1	VA19FHB-36	Low ash, high LA	Low water	SRC, MAP	6	Cookie	Even browning, good surface texture	Dry and firm dough	5	Cracker application suggested
1	VA19W-29	Low ash, high LA	Low water	SRC, MAP	5	Cookie	Fairly even browning and surface texture	Slightly lower spread factor than checks	5	Cracker application suggested
1	Branson*	Slightly high LA	Low water	SRC, MAP	5	Cookie		Dry and crumbly sample. Sandy texture after mixing. Incredibly difficult to portion. Sample cracked when rolling. Dough was dry enough that shortening and sugar did not evenly blend into the sample, resulting in uneven browning and rough surface	2	
1	Hilliard*	Slightly high LA	Low water	SRC, MAP	5	Cookie		Dry sample, hard to work with, significant cracking. Dough was dry enough that shortening and sugar did not evenly blend into the sample, resulting in uneven browning and rough surface	1	
2	Beck 705	Low ash	Low water	SRC, MAP	5	Cookie		Dry and crumbly sample. Sandy texture after mixing. Incredibly difficult to portion. Dough is nearly unworkable. Sample cracked when rolling. Uneven spread with slight surface bubbling. Low spread factor	1	Do not recommend
2	Beck 720	Low ash, high LA		SRC, MAP	7	Cookie	Good Spread Factor	Dry and crumbly sample, uneven browning	5	
2	Beck 722		Slightly low protein	SRC, MAP	5	Cookie	Good Spread Factor	Dough slightly dry, slightly yellow color	5	
2	Beck 724	Low ash, high LA		SRC, MAP	6	Cookie	Good Surface texture, even browning	Dry and crumbly. Slightly low spread factor	5	
2	Beck 725		Slightly low protein	SRC, MAP	6	Cookie	Good Surface texture, even browning. Dough easy to work with		7	Cookie application suggested
2	Beck 727	Low ash, high LA	Low water	SRC, MAP	6	Cookie	High spread factor, even color and texture across the top of the cookie	Slightly uneven surface texture across cookies	8	Cookie application suggested
2	Beck 732	Low ash, high LA	Low water	SRC, MAP	6	Cookie	Even texture across cookies, good surface cracking		7	Cookie application suggested
2	Branson*	Low ash, high LA		SRC, MAP	7	Cookie		Dry and crumbly sample, uneven spread	4	
2	Hilliard*	Low ash, high LA	Low water	SRC, MAP	5	Cookie		Dry and crumbly sample. Sandy, hard to work with, cracked when rolling. Uneven spread with poor surface texture	2	
3	MI16W0133	Low ash		SRC, MAP	5	Cookie		Lower spread factor than check, uneven browning with mild surface bubbling	5	Cookie application suggested
3	Whitetail*	Low ash	Low water	SRC, MAP	5	Cookie	Good spread factor, evenly browned with good surface texture		7	

Table 29. Evaluation comments on flour quality and baked product performance by Ardent Mills

Kellanova Quality Evaluations

Table 30. Solvent retention capacity and alveograph parameters by Kellanova

	• •	Se	olvent Retentio	on Capacity ((%)			Alveogra	ph	
Group	Entry		Sodium		Lactic					
		Water	Carbonate	Sucrose	Acid	Р	L	P/L	le	W
1	15VTK1-101	52.7	69.4	91.4	118.2	41	61	0.67	50.1	67
1	16VDH-SRW03-23	55.0	72.7	95.7	108.8	49	45	1.09	35.8	71
1	17VDH-SRW05-169	51.9	69.7	93.3	119.6	37	57	0.65	45.5	58
1	VA19FHB-36	55.4	75.3	101.3	132.8	53	71	0.75	50.2	85
1	VA19W-29	52.8	70.8	95.8	123.9	43	61	0.7	47.3	68
1	Branson*	52.5	67.7	92.6	115.7	33	71	0.46	43.3	50
1	Hilliard*	53.7	71.8	94.5	116.4	43	57	0.75	41.8	64
2	Beck 705	50.7	68.3	88.0	107.3	29	75	0.39	38.8	41
2	Beck 720	54.4	77.7	104.8	148.5	53	63	0.84	43.9	81
2	Beck 722	51.0	69.6	90.8	118.5	34	58	0.59	44.3	52
2	Beck 724	56.0	78.1	99.5	159.7	66	40	1.65	49.6	108
2	Beck 725	52.6	72.4	88.5	116.3	31	43	0.72	39.2	46
2	Beck 727	51.6	70.8	91.7	137.9	35	73	0.48	48.5	56
2	Beck 732	52.3	69.9	90.6	140.1	43	52	0.83	54.8	72
2	Branson*	55.3	79.9	101.5	124.6	58	60	0.97	37.7	85
2	Hilliard*	54.2	76.8	100.1	132.9	55	54	1.02	44.8	85
3	MI16W0133	51.8	75.2	93.1	104.0	32	59	0.54	33	43
3	Whitetail*	50.8	73.0	89.5	104.5	31	65	0.48	34.2	42

			Farinogra	aph]	Rapid Visc	co-Analyz	er		
Group	Entry	Water Absorp-tion (%)	Develop- ment Time (min)	Stab -ility (min)	Degree of Softening	Peak Time (min)	Peak (cP)	Trough (cP)	Break -down (cP)	Setback (cP)	Final (cP)	Pasting Temp (°C)	Peak/ Final Ratio
1	15VTK1-101	50.0	1.3	1.3	101.0	5.9	2797	1685	1112	1537	3222	-	0.87
1	16VDH-SRW03-23	53.4	1.3	0.8	107.0	6.0	2852	1703	1149	1396	3099	-	0.92
1	17VDH-SRW05-169	50.2	1.3	0.8	103.0	5.8	2552	1333	1219	1199	2532	-	1.01
1	VA19FHB-36	52.1	1.4	1.9	77.0	5.9	2905	1636	1269	1361	2997	-	0.97
1	VA19W-29	52.7	1.4	4.8	57.0	5.8	2627	1412	1215	1246	2658	-	0.99
1	Branson*	52.3	1.3	7.5	53.0	5.9	2731	1428	1303	1206	2634	-	1.04
1	Hilliard*	52.8	1.4	4.4	71.0	5.9	2744	1455	1289	1241	2696	-	1.02
2	Beck 705	51.5	1.6	1.0	76.0	5.9	2695	1582	1113	1540	3122	-	0.86
2	Beck 720	53.2	1.4	8.5	42.0	6.1	2861	1911	950	1674	3585	-	0.80
2	Beck 722	50.2	1.2	0.8	87.0	5.9	2936	1733	1203	1529	3262	-	0.90
2	Beck 724	53.7	1.5	14.4	31.0	6.1	2928	2149	779	1862	4011	-	0.73
2	Beck 725	51.1	1.3	0.6	104.0	5.9	2668	1447	1221	1348	2795	-	0.95
2	Beck 727	51.4	1.4	2.5	73.0	6.1	2876	1824	1052	1519	3343	-	0.86
2	Beck 732	51.8	1.3	2.1	63.0	5.9	3196	1866	1330	1626	3492	-	0.92
2	Branson*	55.7	1.5	4.1	60.0	6.1	3064	1937	1127	1583	3520	-	0.87
2	Hilliard*	54.3	1.5	2.2	53.0	6.0	2928	1902	1026	1619	3521		0.83
3	MI16W0133	51.9	1.6	1.1	124.0	5.8	2368	1258	1110	1208	2466	-	0.96
3	Whitetail*	50.3	1.3	0.4	121.0	5.8	2071	1229	842	1286	2515	-	0.82

Table 31. Farinograph and rapid visco-analyzer parameters by Kellanova

Group	Entry	Moisture (%)	Protein (%)	Damage Starch (%)	Falling Number
1	15VTK1-101	13.9	7.4	5.0	375
1	16VDH-SRW03-23	14.1	7.9	5.1	349
1	17VDH-SRW05-169	14.0	7.4	4.4	312
1	VA19FHB-36	13.9	7.7	4.8	316
1	VA19W-29	14.0	7.5	4.5	328
1	Branson*	14.0	7.8	4.5	325
1	Hilliard*	14.0	7.2	4.3	328
2	Beck 705	14.0	8.0	4.9	379
2	Beck 720	14.0	8.0	4.5	371
2	Beck 722	13.8	6.9	4.8	376
2	Beck 724	14.2	7.8	5.2	415
2	Beck 725	13.9	6.7	4.9	304
2	Beck 727	13.7	7.9	4.5	378
2	Beck 732	13.7	7.9	4.2	394
2	Branson*	14.0	7.9	5.2	376
2	Hilliard*	13.8	7.6	4.6	379
3	MI16W0133	14.1	7.1	4.4	327
3	Whitetail*	14.0	6.7	4.7	304

Table 32. Flour moisture and protein content of the entries by Kellanova

			Analytical Flour Qualities		
		Score: 1 Poor - 9 Excellent			
Group	Entry	Likes	Dislikes	Basis	Score
1	15VTK1-101	Low water absorption, slightly higher Ie than check	No concerns. Hope protein was slightly higher	For cracker processing	7
1	16VDH-SRW03-23	slightly higher protein	Higher water abosrption	For cracker processing	7
1	17VDH-SRW05-169	slightly higher SRC-Lactic acid	low protein content	For cracker processing	6
1	VA19FHB-36	Higher protein and dough strength W40 and degree of softening	No concerns	For cracker processing	8
1	VA19W-29	Slightly higher SRC-lactic acid	Water absorption may be on the high side	For cracker processing	8
1	Branson*	Higher protein, strong dough mixing properties	Dough stability maybe too high that leads to longer dough mixing	For cracker processing. Longer mixing time to develop dough consumes more energy	9
1	Hilliard*	Reasonable to high SRC-LA	Lower protein and higher water absorption	For cracker processing	6
2	Beck 705	High protein, slightly lower water absorption	Protein quality may not be as good since SRC-LA is lower thank checks	For cracker processing	9
2	Beck 720	High protein, high SRC-LA, very strong dough	slightly higher water absorption	For cracker processing	9
2	Beck 722	Strong dough and low water absorption	low protein content	For cracker processing	5
2	Beck 724	High protein, very high SRC-LA, very strong dough	high water absorption	For cracker processing	8
2	Beck 725		low protein low dough strength	For cracker processing	4
2	Beck 727	High protein, high SRC-LA, and dough strength		For cracker processing	9
2	Beck 732	High protein, high SRC-LA, and dough strength		For cracker processing	9
2	Branson*	High protein, high SRC-LA, and dough strength	water absorption too high	For cracker processing	8
2	Hilliard*	high SRC-LA, and dough strength	High water absorption	For cracker processing	6
3	MI16W0133	Low water absorption	Low perotein soft dough	For cracker processing	5
3	Whitetail*	Low water absorption	Low perotein, soft dough	For cracker processing	5

Table 33. Evaluation comments on analytical flour quality by Kellanova

Mennel Milling Quality Evaluations

Table 34. Solvent retention capacity by Mennel Milling

Solvent Retention Capacity (%)				(%)		
Group	Entry	Water	Sodium Carb	Sucrose	Lactic Acid	
	15VTK1-101	54.6	68.2	87.5	114.9	_
1	16VDH-SRW03-23	55.2	71.6	93.0	106.3	
1	17VDH-SRW05-169	53.8	70.9	92.7	119.4	
1	VA19FHB-36	55.8	75.9	99.3	132.7	
1	VA19W-29	54.5	71.3	93.3	122.5	
1	Branson*	50.8	67.0	89.1	109.8	
1	Hilliard*	53.5	72.1	92.4	116.7	
2	Beck 705	53.6	69.6	87.8	108.7	
2	Beck 720	56.9	77.6	101.3	137.6	
2	Beck 722	53.3	69.9	88.8	114.9	
2	Beck 724	56.7	78.7	98.6	149.4	
2	Beck 725	53.8	73.7	86.1	114.6	
2	Beck 727	53.0	73.4	87.3	127.9	
2	Beck 732	52.9	71.3	88.3	131.0	
2	Branson*	58.0	80.6	99.7	118.4	
2	Hilliard*	54.2	78.6	93.4	126.5	
3	MI16W0133	53.8	75.1	94.2	106.9	
3	Whitetail*	52.0	73.9	88.6	102.3	

			Cookies (1	0-50D)			Biscuit	
Group	Entry	Width (mm)	Thickness (mm)	W/T Ratio	Spread Factor	Width (mm)	Height (mm)	Weight (g)
1	15VTK1-101	487.5	63.0	7.7	75.5	394	290	199
1	16VDH-SRW03-23	471.0	67.5	7.0	68.1	400	288	203
1	17VDH-SRW05-169	485.0	62.4	7.8	75.8	393	271	191
1	VA19FHB-36	477.5	65.6	7.3	71.0	387	290	197
1	VA19W-29	486.5	62.0	7.9	76.6	393	301	208
1	Branson*	493.0	58.5	8.4	82.3	389	294	196
1	Hilliard*	493.0	61.1	8.1	78.7	383	271	190
2	Beck 705	484.5	61.8	7.8	76.5	390	318	199
2	Beck 720	478.5	64.8	7.4	72.0	386	330	212
2	Beck 722	486.5	62.9	7.7	75.5	392	254	171
2	Beck 724	467.5	71.5	6.5	63.9	385	275	195
2	Beck 725	488.5	62.6	7.8	76.2	400	254	197
2	Beck 727	491.5	63.0	7.8	76.2	391	260	189
2	Beck 732	485.0	63.7	7.6	74.3	336	241	161
2	Branson*	470.0	65.9	7.1	69.7	385	304	212
2	Hilliard*	478.5	65.9	7.3	70.9	379	273	187
3	MI16W0133	485.4	60.0	8 1	79.0	39/	275	193
3	Whitetail*	482.5	58.6	8.2	80.4	395	264	193

Table 35. Sugar-snap cookie baking test (10-50D) and biscuit test parameters by Mennel Milling

Crown	Entwy	Peak Time	Peak	Trough	Break-down	Setback	Final	Pasting Temp.	Peak/Final
Group	Entry	(min)	(cP)	(cP)	(cP)	(cP)	(cP)	(°C)	Ratio
1	15VTK1-101	7.0	2932	2427	505	945	3372	85.4	0.87
1	16VDH-SRW03-23	7.0	2991	2306	685	1130	3436	86.1	0.87
1	17VDH-SRW05-169	7.0	2598	2123	475	801	2924	86.9	0.89
1	VA19FHB-36	7.0	3003	2323	680	1154	3477	85.3	0.86
1	VA19W-29	7.0	2668	2169	499	826	2995	86.1	0.89
1	Branson*	6.9	2824	2401	423	777	3178	85.4	0.89
1	Hilliard*	6.9	2890	2399	491	823	3222	85.3	0.90
2	Beck 705	7.0	2889	2282	607	1197	3479	86.1	0.83
2	Beck 720	7.0	2877	2118	759	1430	3548	87.6	0.81
2	Beck 722	7.0	2926	2228	698	1208	3436	86.9	0.85
2	Beck 724	7.0	2788	2020	768	1357	3377	86.8	0.83
2	Beck 725	7.0	2677	2216	461	784	3000	85.3	0.89
2	Beck 727	7.0	2822	1975	847	1391	3366	87.7	0.84
2	Beck 732	7.0	3264	2524	740	1385	3909	85.4	0.83
2	Branson*	7.0	3027	2170	857	1348	3518	86.8	0.86
2	Hilliard*	7.0	2932	2095	837	1437	3532	87.5	0.83
3	MI16W0133	7.0	2370	1876	494	784	2660	86.9	0.89
3	Whitetail*	6.9	2055	1684	371	671	2355	87.5	0.87

Table 36. Rapid Visco-Analyzer parameters by Mennel Milling

			Analytical Flour Qualities				End Produc	ct Performance	
Group	Entry		Score: 1 Poor - 9 Excellent				Score: 1 Po	or - 9 Excellent	
		Likes	Dislikes	Basis	Score	Product	Likes	Dislikes	Score
1	15VTK1-101	Low sodium carb SRC %, Low sucrose SRC %	Slightly higher water RC %,	SRC	8	Cookie	Good cookie width, good SF, good cookie thickness		8
1	16VDH-SRW03-23	Low sodium carb SRC %	Slightly higher flour protein content, Slightly higher water RC %, Slighlty higher sucrose SRC %	SRC	6	Cookie		Low cookie width, low SF, higher cookie thickness	6
1	17VDH-SRW05-169	Low sodium carb SRC %	Slightly higher water RC %, Slighlty higher sucrose SRC %	SRC	8	Cookie	Good cookie width, good SF, good cookie thickness		8
1	VA19FHB-36		High water RC %, High sodium carb SRC %, High sucrose SRC %, High lactic acid SRC %	SRC	6	Cookie		Low cookie width, low SF, higher cookie thickness	6
1	VA19W-29	Low sodium carb SRC %	Slightly higher water RC %, Slightly higher sucrose SRC %	SRC	7	Cookie	Good cookie width, good SF, good cookie thickness		8
1	Branson*	Low water %, low sucrose SRC %, low sod carb SRC %		SRC	9	Cookie	Higher SF, Good cookie width and low cookie thickness		9
1	Hilliard*	Low sodium carb SRC %	Slightly higher water RC %, Slightly higher sucrose SRC %	SRC	7	Cookie	Higher SF, Good cookie width and good cookie thickness		9
2	Beck 705	Low sodium carb SRC %, Low sucrose SRC %	Slightly higher flour protein content, Slightly higher water RC %,	SRC	8	Cookie	Higher SF, Good cookie width and good cookie thickness		9
2	Beck 720		Slightly higher flour protein content, Slightly higher water RC %, Higher sucrose SRC %, Higher sodium carb SRC %, Higher lactic acid SRC %	SRC	6	Cookie	Slightly higher cookie width	Low SF, higher cookie thickness	7
2	Beck 722	Low sodium carb SRC %, Low sucrose SRC %	Slightly higher water RC %	SRC	8	Cookie	Good cookie width, good SF, good cookie thickness		8
2	Beck 724		High water RC %, High sodium carb SRC %, High sucrose SRC %	SRC	6	Cookie		Low cookie width, low SF, higher cookie thickness	6
2	Beck 725	Low sucrose SRC %	Slightly higher sodium carb SRC %, Slightly higher water RC %	SRC	7	Cookie	Good cookie width, good SF	slightly higher cookie thickness	7
2	Beck 727	Low water RC %, Low sucrose SRC %	Slightly higher sodium carb SRC %	SRC	8	Cookie	Good cookie width, good SF	slightly higher cookie thickness	7
2	Beck 732	Low water RC %, Low sucrose SRC %, Low sodium carb SRC %		SRC	9	Cookie	Good cookie width, good SF, good cookie thickness		8
2	Branson*		High water RC %, High sodium carb SRC %, High sucrose SRC %	SRC	6	Cookie		Low cookie width, low SF, higher cookie thickness	6
2	Hilliard*		Slightly higher water RC %, Slighlty higher sucrose SRC %, High sodium carb SRC %	SRC	7	Cookie	Good cookie width, good SF, good cookie thickness		8
3	MI16W0133		Slightly higher water RC %, Slighlty higher sucrose SRC %, High sodium carb SRC %	SRC	7	Cookie	Higher SF, Good cookie width and good cookie thickness		9
3	Whitetail*	Low water RC %, Low sucrose SRC %	Slightly higher sodium carb SRC %	SRC	8	Cookie	Good SF		8

Table	37.	Evaluation	comments o	on flour c	nuality	and	baked	product	performance b	v Menne	el Milling
	• • •		• • • • • • • • • • •		100000000000000000000000000000000000000	~~~~~~		p10000000			

Mondelez Quality Evaluations

Crown	Enter		Solvent Retention	Capacity (9	%)	Particle Size				
Group	Entry	Water	Sodium Carbonate	Sucrose	Lactic Acid	Dx10 μm	Dx50 μm	Dx90 µm	D(4,3) µm	
1	15VTK1-101	54.1	73.0	108.3	100.7	9.7	34.9	108	48.8	
1	16VDH-SRW03-23	51.8	74.2	103.3	96.8	9.0	34.3	110	49.0	
1	17VDH-SRW05-169	51.6	77.2	108.8	100.2	8.3	31.8	108	47.2	
1	VA19FHB-36	54.2	78.9	117.6	118.5	9.4	33.4	119	51.5	
1	VA19W-29	52.2	75.3	108.6	103.3	8.4	32.1	110	47.8	
1	Branson*	50.3	72.0	103.9	94.2	8.8	33.3	108	47.9	
1	Hilliard*	51.1	76.9	114.7	95.8	7.6	30.5	110	47.1	
2	Beck 705	49.5	75.6	100.5	86.9	10.6	36.9	103	48.3	
2	Beck 720	54.3	82.3	124.5	123.4	9.5	31.9	100	45.1	
2	Beck 722	51.4	78.8	108.1	105.3	11.2	35.9	106	49.0	
2	Beck 724	55.8	85.0	121.7	135.9	10.0	32.0	106	46.9	
2	Beck 725	53.4	78.0	102.5	93.7	10.2	33.7	105	47.3	
2	Beck 727	53.4	76.7	109.8	113.6	10.2	32.6	103	46.4	
2	Beck 732	53.4	74.8	104.8	128.6	10.8	33.4	101	46.2	
2	Branson*	55.2	87.2	120.3	99.5	10.3	37.1	111	50.7	
2	Hilliard*	55.1	81.5	115.9	106.0	8.5	33.1	109	48.3	
3	MI16W0133	52.1	82.6	112.5	89.9	10.2	36.4	108	49.5	
3	Whitetail*	51.0	79.9	109.1	90.3	9.9	35.7	108	49.2	

Star of the West Milling Evaluations Table 39. Solvent retention capacity, cookie baking test and amyloviscograph test parameters by Star of the West Milling

		Solvent Retention Capacity (%)					Cookies (10-50D)				Flour	Amylograph
Group	Entry	Water Sodium Sucrose Lactic Carbonate Acid		LA/SC+S	Width (mm)	Thick- ness (mm)	W/T Ratio	Spread Factor	FN	Peak Peak Viscosity (BU)		
1	15VTK1-101	54.1	71.6	95.4	116.2	0.70	475.5	59.5	7.99	79.0	364	619
1	16VDH-SRW03-23	55.0	73.8	96.9	102.4	0.60	452.5	67.5	6.70	65.8	370	570
1	17VDH-SRW05-169	52.7	71.2	97.5	115.2	0.68	469.0	56.0	8.38	82.2	303	423
1	VA19FHB-36	56.4	77.7	108.4	133.2	0.72	453.0	69.0	6.57	65.7	286	586
1	VA19W-29	53.1	72.3	97.4	120.4	0.71	462.5	60.0	7.71	76.2	321	443
1	Branson*	51.9	69.9	92.0	111.3	0.69	473.0	58.5	8.09	79.9	325	508
1	Hilliard*	54.3	72.7	96.2	115.0	0.68	472.0	57.0	8.28	81.3	299	457
2	Beck 705	53.2	71.6	89.5	105.2	0.65	474.0	59.0	8.03	78.9	353	552
2	Beck 720	56.3	80.2	111.2	137.1	0.72	464.0	63.0	7.37	72.2	394	609
2	Beck 722	53.1	78.2	93.9	115.7	0.67	477.0	57.0	8.37	82.7	367	542
2	Beck 724	58.0	81.0	106.6	155.5	0.83	451.0	70.5	6.40	68.2	396	695
2	Beck 725	54.7	74.7	91.8	110.5	0.66	480.5	57.0	8.43	83.3	316	417
2	Beck 727	53.0	73.2	93.5	130.6	0.78	465.0	63.0	7.38	72.5	379	562
2	Beck 732	54.2	72.7	94.2	138.4	0.83	466.0	56.5	8.25	81.0	340	668
2	Branson*	57.0	82.8	104.5	119.0	0.64	450.0	65.5	6.87	67.5	366	607
2	Hilliard*	55.8	78.9	100.7	123.5	0.69	460.5	65.5	7.03	69.0	376	637
3	MI16W0133	52.6	75.3	92.7	102.2	0.61	471.5	56.0	8.42 8.64	82.7 84.8	303 332	310
3	winician.	54.0	/0./	91.5	101.9	0.30	419.3	55.5	0.04	04.0	552	209

Group	Entry	Peak Time	Peak	Trough	Break-down	Setback	Final	Pasting Temp	Peak/Final
Oloup	Entry	(min)	(cP)	(cP)	(cP)	(cP)	(cP)	(°C)	Ratio
1	15VTK1-101	6.00	2960	1794	1166	1568	3362	83.9	0.88
1	16VDH-SRW03-23	6.00	3005	1844	1161	1383	3227	68.7	0.93
1	17VDH-SRW05-169	6.07	2599	1406	1193	1217	2623	83.9	0.99
1	VA19FHB-36	5.93	2984	1717	1267	1345	3062	79.1	0.97
1	VA19W-29	5.87	2601	1409	1192	1240	2649	83.0	0.98
1	Branson*	5.93	2777	1489	1288	1212	2701	83.1	1.03
1	Hilliard*	5.87	2839	1521	1318	1256	2777	81.5	1.02
2	Beck 705	6.00	2823	1684	1139	1531	3215	83.7	0.88
2	Beck 720	6.07	2904	2006	898	1727	3733	84.7	0.78
2	Beck 722	6.00	2981	1813	1168	1521	3334	83.9	0.89
2	Beck 724	6.20	3000	2256	744	1848	4104	83.9	0.73
2	Beck 725	5.87	2713	1482	1231	1305	2787	83.0	0.97
2	Beck 727	6.07	2979	1926	1053	1541	3467	85.4	0.86
2	Beck 732	6.00	3158	1933	1225	1629	3562	80.6	0.89
2	Branson*	6.13	3118	2029	1089	1564	3593	85.6	0.87
2	Hilliard*	6.07	3020	1976	1044	1643	3619	83.8	0.83
3	MI16W0133	6.00	2497	1373	1124	1236	2609	84.7	0.96
3	Whitetail*	5.93	2149	1292	857	1304	2596	83.9	0.83

Table 40. Rapid Visco-Analyzer parameters by Star of the West Milling

		A			End Product Perfo					
		Score: 1 Poor - 9 Excellent				Score: 1 Poor -	9 Excellent			Additional Comments
Group	Entry	Likes	Dislikes	Basis	Score	Product	Likes	Dislikes	Score	Mitigating Physical/Chemical Properties
1	15VTK1-101	Seems to match the Hilliard check fairly closely		SRC	7	Sugar snap cookies	decent spread	little top pattern	7	Should be a good cracker flour
1	16VDH-SRW03-23		High Water SRC in relation to other solvents.	SRC	6	Sugar snap cookies		tight spread with very little top pattern	5	
1	17VDH-SRW05-169	Very good SRC profile		SRC	9	Sugar snap cookies	Best spread of group with good top pattern		9	Will make good cookies
1	VA19FHB-36		High water, sucrose, and sodium carbonate SRC. Lowest FN	SRC	5	Sugar snap cookies		Tightest cookies of the group	5	
1	VA19W-29	Relatively good SRC profile and a strong flour		SRC	8	Sugar snap cookies		Tighter spread than either of the checks	6	
1	Branson*	Low water and sodium carbonate SRC		SRC	9	Sugar snap cookies			6	
1	Hilliard*			SRC	7	Sugar snap cookies			7	
2	Beck 705			SRC	7	Sugar snap cookies	Better cookie spread than the checks	not a distinct top patter	r 7	
2	Beck 720	Higher gluten strength	High starch damage as shown by Sodium Carbonate	SRC	6	Sugar snap cookies	Good top pattern	tight cookies	5	
2	Beck 722		High starch damage as shown by Sodium Carbonate	SRC	6	Sugar snap cookies	Much better cookie spreads than the checks	not a distinct top patter	r 8	
2	Beck 724		SRC profile perhaps a bit too strong	SRC	5	Sugar snap cookies		Tightest cookies of the group	4	May be used in blending to strength other flours
2	Beck 725	compares favorably to the Hilliard check		SRC	8	Sugar snap cookies	best spread of group with a good top pattern		9	very strong flour with good cookie baking.
2	Beck 727	Low water SRC especially given the high lactic acid.		SRC	7	Sugar snap cookies		tight cookies	4	
2	Beck 732			SRC	7	Sugar snap cookies	good spread with a distinct top pattern		8	Strong flour with good cookie baking.
2	Branson*		High starch damage as shown by Sodium Carbonate	SRC	7	Sugar snap cookies			5	
2	Hilliard*			SRC	8	Sugar snap cookies			6	
3	MI16W0133	Very good SRC profile		SRC	9	Sugar snap cookies	good cookie spread	Not as good of a top pattern as the control	9	Good for cookies, may not work for applications requiring a strong flour
3	Whitetail*		Somewhat low Amylograph	SRC	8	Sugar snap cookies	best spread of all flours submitted		9	

Table 41. Evaluation comments on flour quality and baked product performance by Star of the West Milling

	Entry		Sponge Cake						
Group	·	External Score	Crumb Grain Score	Texture Score	Volume (ml)	Total Score	Ranking		
1	15VTK1-101	15	21	21	1234	57	3		
1	16VDH-SRW03-23	14	20	21	1173	55	7		
1	17VDH-SRW05-169	15	21	21	1224	57	4		
1	VA19FHB-36	12	20	23	1272	55	6		
1	VA19W-29	14	20	23	1311	57	1		
1	Branson*	15	20	21	1255	56	5		
1	Hilliard*	15	21	21	1286	57	2		
2	Beck 705	15	21	21	1239	57	1		
2	Beck 720	12	20	22	1219	54	7		
2	Beck 722	15	21	21	1232	57	2		
2	Beck 724	14	20	21	1098	55	8		
2	Beck 725	12	20	23	1240	55	5		
2	Beck 727	12	19	23	1234	54	6		
2	Beck 732	15	20	21	1211	56	4		
2	Branson*	15	19	17	1145	51	9		
2	Hilliard*	15	20	21	1228	56	3		
3	MI16W0133	12	19	21	1208	52	2		
3	Whitetail*	15	21	21	1205	57	1		

Wheat Marketing Center Quality Evaluations

Table 42. Sponge cake baking test parameters by Wheat Marketing Center

		Ana	lytical Flour Qua	lities			End Product I	Performance	
		Score: 1 Poor - 9 Excellent				Score: 1 Poor - 9 Excel	ent		
Group	Entry	Likes	Dislikes	Basis	Score	Product	Likes	Dislikes	Score
1	15VTK1-101	Similar protein to checks		Primary Analysis	7	Japanese Sponge Cake	Similar quality to both checks		7
1	16VDH-SRW03-23		Higher protein than checks	Primary Analysis	6	Japanese Sponge Cake		Lower volume, slightly domed top and coarser crumb structure	6.5
1	17VDH-SRW05-169	Similar protein to checks		Primary Analysis	7	Japanese Sponge Cake	Similar quality to both checks		7
1	VA19FHB-36	Similar protein to checks		Primary Analysis	7	Japanese Sponge Cake		Dented top	6.5
1	VA19W-29	Similar protein to checks		Primary Analysis	7	Japanese Sponge Cake	Larger volume and softer texture than		7
1	Branson*			Primary Analysis	7	Japanese Sponge Cake			6.5
1	Hilliard*			Primary Analysis	7	Japanese Sponge Cake			7
2	Beck 705		Higher ash and slightly higher	Primary Analysis	5	Japanese Sponge Cake	Larger volume and finer crumb structure		7
2	Beck 720	Similar protein to checks		Primary Analysis	6	Japanese Sponge Cake		Dented top	6
2	Beck 722	Lower protein than checks		Primary Analysis	7	Japanese Sponge Cake	Larger volume and finer crumb structure		7
2	Beck 724	Similar protein to checks		Primary Analysis	6	Japanese Sponge Cake		Lower volume than both checks and slightly domed shape	5
2	Beck 725	Lower protein than checks		Primary Analysis	8	Japanese Sponge Cake		Softer texture than both checks but dented top and coarser crumb	6
2	Beck 727	Similar protein to checks		Primary Analysis	6	Japanese Sponge Cake		Dented top	6
2	Beck 732	Similar protein to checks		Primary Analysis	6	Japanese Sponge Cake	Similar to Hilliard; Larger volume and finer crumb than		6.5
2	Branson*			Primary Analysis	6	Japanese Sponge Cake		Firm texture	5
2	Hilliard*			Primary Analysis	7	Japanese Sponge Cake			6.5
3	MI16W0133	Similar protein to check		Primary Analysis	7	Japanese Sponge Cake		Dented top and coarser crumb than check	5.5
3	Whitetail*			Primary Analysis	7	Japanese Sponge Cake			7

Table 43. Evaluation comments on flour quality and sponge cake baking test performance by Wheat Marketing Center

Solvent Retention Capacity (%) Mixograph										
Group	Entry	Water	Sodium Carb	Sucrose	Lactic Acid	Water Abs. (%)	Mid-point Time (min)	Mid- Point Height	Mid- point Work	Mid-point Width+2 min
1	15VTK1-101	56.2	70.0	95.5	106.3	53.4	3.2	37.7	109.5	10.3
1	16VDH-SRW03-23	55.1	72.6	98.2	95.9	52.8	1.1	43.7	38.6	13.8
1	17VDH-SRW05-169	57.6	70.9	99.1	109.0	52.2	3.3	41.2	124.8	10.2
1	VA19FHB-36	60.9	75.9	106.3	123.9	52.7	4.1	41.9	158.2	11.5
1	VA19W-29	57.4	73.1	96.6	115.8	52.5	3.5	40.2	131.3	10.6
1	Branson*	61.0	70.4	92.8	104.5	52.7	2.7	43.8	101.9	10.4
1	Hilliard*	57.0	72.1	99.1	108.4	52.3	2.7	40.1	100.7	11.0
2	Beck 705	57.5	69.0	93.3	96.6	52.8	4.3	40.7	163.9	8.6
2	Beck 720	54.8	79.9	108.6	126.7	52.7	3.4	43.0	128.7	8.9
2	Beck 722	53.5	70.3	94.7	105.2	52.0	4.3	36.2	148.6	8.4
2	Beck 724	62.4	78.9	105.4	144.5	52.9	7.0	39.0	259.6	10.9
2	Beck 725	60.9	72.3	92.4	103.7	52.3	4.9	36.7	168.1	7.6
2	Beck 727	58.9	72.4	95.2	118.3	52.4	3.2	39.5	115.3	10.7
2	Beck 732	64.8	70.4	94.1	126.0	52.4	5.5	39.2	198.8	11.6
2	Branson*	63.2	81.3	105.7	107.2	51.8	2.5	42.8	95.8	9.2
2	Hilliard*	59.0	77.5	103.2	115.2	52.5	2.8	40.2	101.6	12.4
3	MI16W0133	61.7	77.0	99.9	95.7	52.5	2.5	36.7	82.3	7.9
3	Whitetail*	53.0	73.0	96.3	94.8	51.8	2.8	37.2	94.0	8.2

USDA-ARS Western Wheat Quality Laboratory Quality Evaluations

 Table 44. Solvent retention capacity and mixograph test parameters by USDA-ARS Western Wheat Quality Laboratory

 Solvent Potention Capacity (%)

Group 1 1 1 1 1	Entry	Cookie	es (10-52)	Spo	nge Cake
Group	Entry	Diameter (cm)	Top Grain Score	$\begin{tabular}{ c c c c c c c c c c c } \hline Sponge Cake \\ \hline rain Score & Volume (mL) & Texture Score \\ \hline 8 & 1175 & 19 \\ \hline 8 & 1085 & 18 \\ \hline 8 & 1209 & 20 \\ \hline 8 & 1198 & 21 \\ \hline 8 & 1219 & 20 \\ \hline 8 & 1180 & 21 \\ \hline 7 & 1236 & 23 \\ \hline 8 & 1213 & 20 \\ \hline 8 & 1213 & 20 \\ \hline 8 & 1216 & 21 \\ \hline 7 & 1146 & 22 \\ \hline 8 & 1248 & 23 \\ \hline 8 & 1248 & 23 \\ \hline 8 & 1210 & 20 \\ \hline 9 & 1222 & 24 \\ \hline 7 & 1160 & 23 \\ \hline 7 & 1211 & 23 \\ \hline 8 & 1185 & 23 \\ \hline 8 & 1208 & 24 \\ \hline \end{tabular}$	Texture Score
1	15VTK1-101	9.3	8	1175	19
1	16VDH-SRW03-23	9.1	8	1085	18
1	17VDH-SRW05-169	9.2	8	1209	20
1	VA19FHB-36	9.2	8	1198	21
1	VA19W-29	9.1	8	1219	20
1	Branson*	9.4	8	1180	21
1	Hilliard*	9.0	7	1236	23
2	Beck 705	9.2	8	1183	21
2	Beck 720	8.8	8	1213	20
2	Beck 722	9.2	8	1216	21
2	Beck 724	9.0	7	1146	22
2	Beck 725	9.3	8	1248	23
2	Beck 727	9.1	8	1210	20
2	Beck 732	9.3	9	1222	24
2	Branson*	8.9	7	1160	23
2	Hilliard*	9.0	7	1211	23
3	MI16W0133	9.1	8	1185	23
3	Whitetail*	9.1	8	1208	24

Table 45. Sugar-snap cookie and sponge cake baking test parameters by USDA-ARS Western Wheat Quality Laboratory

			Analytical Flour Qualities			End	Product I	Performan	ce
		Score: 1 Poor	- 9 Excellent			Score: 1 P	oor - 9 Ex	cellent	
Group	Entry	Likes	Dislikes	Basis	Score	Product	Likes	Dislikes	Score
1	15VTK1-101	Good SRCs			9	Cookie			8
1	16VDH-SRW03-23	Good SRCs			9	Cookie			6
1	17VDH-SRW05-169	Good SRCs			9	Cookie			7
1	VA19FHB-36		High Water and Sucrose SRCs		6	Cookie			7
1	VA19W-29	Good SRCs			9	Cookie			6
1	Branson*		Higher Water SRC		8	Cookie			8
1	Hilliard*	Good SRCs			9	Cookie			5
2	Beck 705		Slightly high ash		8	Cookie			7
2	Beck 720		High Carb and Sucrose SRCs		6	Cookie			3
2	Beck 722	Good SRCs			9	Cookie			6
2	Beck 724		High Water and Sucrose SRCs		6	Cookie			4
2	Beck 725		Slightly high Water SRC		8	Cookie			7
2	Beck 727	Good SRCs			9	Cookie			6
2	Beck 732		High Water SRC		7	Cookie			8
2	Branson*		High SRCs		5	Cookie			3
2	Hilliard*		High Sucrose SRC		8	Cookie			4
3	MI16W0133		Slightly high Water SRC		8	Cookie			5
3	Whitetail*	Good SRCs			9	Cookie			5

Table 46. Evaluation comments on flour quality and baked product performance by USDA-ARS Western Wheat Quality Laboratory

Table 46-Continued

		E	End Product Performance Score: 1 Poor - 9 Excellent								
		Score: 1 Poor -	9 Excellent								
Group	Entry	Product	Likes	Dislikes	Score						
1	15VTK1-101	Sponge Cake			4						
1	16VDH-SRW03-23	Sponge Cake		Dense	3						
1	17VDH-SRW05-169	Sponge Cake			5						
1	VA19FHB-36	Sponge Cake			5						
1	VA19W-29	Sponge Cake			5						
1	Branson*	Sponge Cake			5						
1	Hilliard*	Sponge Cake			7						
2	Beck 705	Sponge Cake			5						
2	Beck 720	Sponge Cake			5						
2	Beck 722	Sponge Cake			6						
2	Beck 724	Sponge Cake			5						
2	Beck 725	Sponge Cake			6						
2	Beck 727	Sponge Cake			5						
2	Beck 732	Sponge Cake			7						
2	Branson*	Sponge Cake			5						
2	Hilliard*	Sponge Cake			6						
3	MI16W0133	Sponge Cake			5						
3	Whitetail*	Sponge Cake			7						

Group	Entry	Solvent Retention Capacity (%)				Cookie (10-52)	
		Water	Sodium	Sucrose	Lactic	Width	Top Grain
1	15VTK1-101	54.1	75.2	89.9	107.3	18.7	6
1	16VDH-SRW03-23	56.2	76.2	92.3	99.6	17.9	3
1	17VDH-SRW05-169	53.4	73.2	92.5	111.9	18.5	4
1	VA19FHB-36	57.2	78.6	99.8	123.9	18.0	2
1	VA19W-29	53.9	73.8	93.8	115.7	18.4	4
1	Branson*	53.3	71.1	89.9	106.9	18.3	4
1	Hilliard*	55.6	75.3	93.2	108.3	18.4	5
2	Beck 705	52.8	72.8	88.2	102.8	18.5	4
2	Beck 720	56.8	80.8	102.4	129.3	17.8	4
2	Beck 722	53.9	74.8	90.4	112.2	18.3	5
2	Beck 724	59.2	82.3	101.8	140.0	17.9	3
2	Beck 725	56.6	76.5	87.9	107.9	18.8	4
2	Beck 727	54.4	74.8	92.0	121.6	18.5	3
2	Beck 732	55.5	74.8	89.6	125.1	18.2	4
2	Branson*	58.3	83.7	102.0	112.2	17.7	4
2	Hilliard*	57.4	80.0	97.7	120.9	18.2	3
3	MI16W0133	55.3	79.7	93.2	99.9	18.3	4
3	Whitetail*	54.4	76.6	90.7	100.4	18.8	4

USDA-ARS Soft Wheat Quality Laboratory Soft Wheat Quality Evaluations

Table 47. Solvent retention capacity and cookie baking test parameters by USDA-ARS Soft Wheat Quality Laboratory

Group	Entry	Mixing Absorption	Peak Time	Peak Value	Peak Width	Width @7min
		(%)	(sec)	(%)	(%)	(%)
1	15VTK1-101	54.0	70	43.5	24.3	7.7
1	16VDH-SRW03-23	54.0	70	52.7	32.9	8.4
1	17VDH-SRW05-169	53.0	70	43.0	23.6	8.7
1	VA19FHB-36	55.5	60	39.7	15.2	10.8
1	VA19W-29	53.0	70	45.2	26.7	8.6
1	Branson*	53.5	60	44.9	26.3	10.6
1	Hilliard*	53.5	60	44.2	24.8	8.7
2	Beck 705	52.5	60	45.9	27.8	6.2
2	Beck 720	53.5	55	41.4	21.8	9.8
2	Beck 722	52.0	80	38.6	18.0	8.5
2	Beck 724	56.0	70	39.4	17.2	14.5
2	Beck 725	52.5	60	37.6	16.3	7.7
2	Beck 727	53.0	65	19.4	19.4	8.0
2	Beck 732	54.5	65	13.8	13.8	9.0
2	Branson*	55.0	70	20.8	20.8	9.7
2	Hilliard*	55.5	70	37.8	37.8	8.1
3	MI16W0133	53.0	60	22.7	22.7	7.1
3	Whitetail*	52.0	60	18.0	18.0	7.7

Table 48. Mixograph parameters by USDA-ARS Soft Wheat Quality Laboratory

Figure 1. Mixograms of the WQC 2023 crop entries from Virginia Polytechnic Institute and State University performed by USDA-ARS Soft Wheat Quality Laboratory. *Check varieties.

Figure 2. Mixograms of the WQC 2023 crop entries from Beck's Hybrids performed by USDA-ARS Soft Wheat Quality Laboratory.

Figure 3. Mixograms of the WQC 2023 crop entries from Michigan State University performed by USDA-ARS Soft Wheat Quality Laboratory. *Check variety.

Appendix I. Materials and Methods of the USDA-ARS SWQL

Whole Kernel Moisture, Air-oven Method, AACC Method 44-15.02

What grain is coarsely ground to minimize moisture loss and dried in a convention oven set at 140°C for 90 min. The moisture content is expressed as the percent loss of weight during drying.

Whole Wheat Protein

Whole wheat protein is determined by Nitrogen combustion analysis using the Elementar Nitrogen Analyzer. Units are recorded in % protein converted from nitrogen x 5.7 and expressed on a 12% moisture basis.

Falling Number, AACC Method 56-81B

The falling number test measures the travel time of the plunger in seconds (falling number) from the top to the bottom position in a glass tube filled with a suspension of whole grain meal or milled flour, immediately after being cooked in a boiling water jacket to produce gelatinized starch. The higher the viscosity of whole grain meal or flour paste in the glass tube, the longer the travel time of the plunger.

Amylase Activity, AACC Method 22-02-01

Alpha-amylase can be measured directly using a kit from Megazyme, International, Measurement of alpha-Amylase in Plant and Microbial Materials Using the Ceralpha Method. The SWQL uses a modified micro method of the Megazyme assay. Units are expressed in alphaamylase activity as SKB units/gram (@ 25°C).

Test Weight, AACC Method 55-10

Test weight is measured per Winchester bushel of cleaned wheat subsequent to the removal of dockage using a Carter-Day dockage tester. Units are recorded as pounds/bushel (lb/bu) and kilograms/hectoliter (kg/hl).

1000-Kernel Weight

Units are recorded as grams/ 1000 kernels of cleaned wheat. There is little difference between 1000-kernel weight and milling quality when considering shriveled-free grain. However, small kernel cultivars that have 1000-kernel weight below 30 grams likely will have reduced milling yield of about 0.75%.

Single Kernel Characterization System (SKCS), AACC Method 55-31

SKCS distribution shows percent soft (A), semi-soft (B), semi-hard (C), and hard (D) SKCS hardness index; moisture content; kernel size; and kernel weight; along with standard deviations.

Miag Multomat Experimental Flour Mill Unit

The Miag Multomat Mill is a pneumatic conveyance system consisting of eight pairs of 254 mm diameter x 102 mm wide rolls, and ten sifting passages. Break rolls operate at 340 rpm for the fast rolls and 145 rpm for the slow rolls; 2.34:1 and reduction at 340 rpm fast and 250 rpm slow; 1.36:1. The first three rolls are break rolls; 1st break: 14 corrugations/inch, α 40, β 70, land 0.004", 8% spiral; 2nd break: 20 corrugations/inch, α 40, β 75, land 0.002", 10% spiral; 3rd break: 24 corrugations/inch, α 35, β 75, land 0.002", 10% spiral. The five reduction rolls are

smooth, not frosted. Following the second break is the grader and duster following the first reduction; allowing for more sifting surface area respectfully. Each mill run including the grader and duster precedes six sieves. Residue for this system includes head shorts, bran, red dog, and tail shorts.

Experimental Milling Procedure

The Miag Multomat Mill is a pneumatic conveyance system consisting of eight pairs of 254 mm diameter x 102 mm wide rolls, and ten sifting passages. Three of the pairs are corrugated break rolls and five are reduction rolls. Each sifting passage contains six separate sieves. The two top sieves for each of the break rolls are intended to be used as scalp screens for the bran.

Soft red and soft white winter wheat grain is tempered to 14.5% moisture. The tempered grain is held for 24 hours prior to milling and then introduced into the first break rolls at a rate of approximately 600g/min. Straight grade flour is a blend of three break flour streams, grader flour, five reduction streams and 1M re-duster flour. The straight grade flour is then re-bolted to remove any remaining residual by-products not removed by the mill using a stainless steel screen of 165 micron openings. The ash content of the straight grade flour usually ranges from 0.38 and 0.50%. Bran, head shorts, tail shorts and red dog are by-products, which are not included with the flour. Flour yield of eastern soft wheat varies from 70 to 78%. Flour yield depends on wheat variety and is influenced by environmental growing conditions. Sprouted and/or shriveled kernels negatively impact the flour yield. Recovery of all mill products is usually about 98%.

Flour Moisture, Air-oven Method, AACC Method 44-16.01

Wheat flour (~2 g) is dried on a hot aluminum plate in an air oven set at 140°C for 15 min. The moisture content is expressed as the percent loss of weight during drying.

Flour Protein

Protein is determined by near infra-red (NIR), using a Unity NIR instrument calibrated by a nitrogen combustion analysis on the Leco Nitrogen Analyzer. Units are recorded in percent protein converted from nitrogen x 5.7 and expressed on 14% moisture basis.

Flour protein differences among cultivars can be a reliable indicator of genetic variation provided the varieties are grown together, but can vary from year to year at any given location. Flour protein from a single, non-composite sample may not be representative. Based on the Soft Wheat Quality Laboratory grow-outs, protein can vary as much 1.5 % for a cultivar grown at various locations in the same half-acre field. Flour protein of 8% to 9% is representative for breeder's samples and SWQL grow-out cultivars.

Flour Ash, AACC Method 08-01

Flour ash is determined following the basic AACC method, expressed on 14% moisture basis.

Solvent Retention Capacity Test (SRC), AACC Method 56-11

Flour Lactic Acid, Sucrose, Water, and Sodium Carbonate Retention Capacities (SRC) results are expressed as percent solvent retained by weight.

Water SRC is a global measure of the water affinity of the macro-polymers (starch, arabinoxylans, gluten, and gliadins). It is often the best predictor of baked product performance. Lower water values are desired for cookies, cakes, and crackers, with target values below 51% on small experimental mills and 54% on commercial or long-flow experimental mills.

Sucrose SRC is a measure of arabinoxylan (also known as pentosans) content, which can strongly affect water absorption in baked products. Water soluble arabinoxylans are thought to be the fraction that most greatly increases sucrose SRC. Sucrose SRC probably is the best predictor of cookie quality, with sugar snap cookie diameters decreasing by 0.07 cm for each percentage point increase in sucrose SRC. Soft wheat flours for cookies typically have a target of 95% or less when used by the US baking industry for biscuits and crackers. The 95% target value can be exceeded in flour samples where a higher lactic acid SRC is required for product manufacture since the higher sucrose SRC is due to gluten hydration and not to swelling of the water soluble arabinoxylans.

Sodium carbonate SRC employs a very alkaline solution that ionizes the ends of starch polymers increasing the water binding capacity of the molecule. Sodium carbonate SRC increases as starch damage due to milling increases. Normal values for good milling soft varieties are 68% or less.

Lactic acid SRC measures gluten strength. Typical values are below 85% for "weak" soft varieties and above 105% or 110% for "strong" gluten soft varieties. Lactic acid SRC results correlate to the SDS-sedimentation test. The lactic acid SRC is also correlated to flour protein concentration, but the effect is dependent on genotypes and growing conditions.

Flour Damaged Starch

As measured by the Chopin SDMatic starch damage instrument using the supplied AACC calibration. Starch damage is a measure of the damage to the starch granule occurring during the milling process.

Rapid Visco-Analyzer (RVA) Method

Viscosity units are in centipoise units, peak time in minutes, pasting temperature in degrees centigrade. The hot pasting viscosity/time analysis of starch and flour was accomplished using a Rapid Visco-Analyzer (RVA), Model RVA-4 (Foss North America, Inc., Eden Prairie, MN). The "standard 1" heating profile of that instrument's software (Thermocline for Windows, version 2.0, Newport Scientific Pty. Ltd., Warriewood, NSW, Australia) was employed to produce pasting curves based on 3.5 g (14% moisture basis) flour and 25 ml deionized water. Maximum heating temperature was 95°C and minimum cooled temperature was 50 °C. Peak pasting viscosity, peak time, minimum (trough) viscosity during cooling, breakdown viscosity (difference between peak and minimum viscosities), final viscosity at the conclusion of cooling, and setback (difference between final and minimum viscosities) were determined for each sample.

Sugar Snap Cookie, Micro Method, AACC Method 10-52

Diameter of two cookies expressed in cm, cookie top grain expressed in arbitrary units from unacceptable to outstanding from 1 to 9, respectively, are determined. Diameter and stack height of cookies baked according to this method are measured and used to evaluate flour baking quality.

Cultivars with larger cookie spreads tend to release moisture efficiently during the baking process due to lower water absorption while cultivars yielding smaller diameter cookies tend to be higher in water absorption and hold the moisture longer during baking.

Cookie spread determined within a location is a reliable indicator of the source cultivar's genetic characteristics. However, cookie spread, unlike milling quality, is greatly influenced by environmental conditions. An absolute single value for cookie spread could be misleading. Within a location the single value is significantly important in comparison to known standards. The average cookie spread for three different examples of a cultivar is representative of that wheat.